Linux移植之内核启动过程start_kernel函数简析

Linux移植之内核启动过程引导阶段分析中从arch/arm/kernel/head.S开始分析,最后分析到课start_kernel这个C函数,下面就简单分析下这个函数,因为涉及到Linux的内容较多,这里只是简单介绍下内核启动流程。先看一下内核启动的流程框图,截图来自《嵌入式Linux应用开发完全手册》。内核引导阶段已经分析过,接下来分析一下内核启动的第二阶段。

1、start_kernel函数全局概览

2、start_kernel函数调用层次

Linux移植之内核启动过程start_kernel函数简析

1、start_kernel函数全局概览,对start_kernel作一下粗略注释。

打开init\Main.c ,下面主要分析处理UBOOT传入的参数,其中r1是传入的第一个参数存放的地址,里面存放着机器类型ID,已经处理过了;r2是传入的第二个参数,它存放着tag列表数据的地址。先看一下整个start_kernel函数,以下程序参考自http://www.cnblogs.com/lifexy/p/7366782.html

 asmlinkage void __init start_kernel(void) 

 {
char * command_line;
extern struct kernel_param __start___param[], __stop___param[]; smp_setup_processor_id(); //来设置smp process id,当然目前看到的代码里面这里是空的 unwind_init(); //lockdep是linux内核的一个调试模块,用来检查内核互斥机制尤其是自旋锁潜在的死锁问题。
//自旋锁由于是查询方式等待,不释放处理器,比一般的互斥机制更容易死锁,
//故引入lockdep检查以下几种情况可能的死锁(lockdep将有专门的文章详细介绍,在此只是简单列举):
//
//·同一个进程递归地加锁同一把锁;
//
//·一把锁既在中断(或中断下半部)使能的情况下执行过加锁操作,
// 又在中断(或中断下半部)里执行过加锁操作。这样该锁有可能在锁定时由于中断发生又试图在同一处理器上加锁;
//
//·加锁后导致依赖图产生成闭环,这是典型的死锁现象。
lockdep_init();
//关闭当前CUP中断
local_irq_disable(); //修改标记early_boot_irqs_enabled;
//通过一个静态全局变量 early_boot_irqs_enabled来帮助我们调试代码,
//通过这个标记可以帮助我们知道是否在”early bootup code”,也可以通过这个标志警告是有无效的终端打开
early_boot_irqs_off(); //每一个中断都有一个IRQ描述符(struct irq_desc)来进行描述。
//这个函数的主要作用是设置所有的 IRQ描述符(struct irq_desc)的锁是统一的锁,
//还是每一个IRQ描述符(struct irq_desc)都有一个小锁。
early_init_irq_lock_class();
/* * Interrupts are still disabled. Do necessary setups, then
* enable them
*/
// 大内核锁(BKL--Big Kernel Lock)
//大内核锁本质上也是自旋锁,但是它又不同于自旋锁,自旋锁是不可以递归获得锁的,因为那样会导致死锁。
//但大内核锁可以递归获得锁。大内核锁用于保护整个内核,而自旋锁用于保护非常特定的某一共享资源。
//进程保持大内核锁时可以发生调度,具体实现是:
//在执行schedule时,schedule将检查进程是否拥有大内核锁,如果有,它将被释放,以致于其它的进程能够获得该锁,
//而当轮到该进程运行时,再让它重新获得大内核锁。注意在保持自旋锁期间是不运行发生调度的。
//需要特别指出,整个内核只有一个大内核锁,其实不难理解,内核只有一个,而大内核锁是保护整个内核的,当然有且只有一个就足够了。
//还需要特别指出的是,大内核锁是历史遗留,内核中用的非常少,一般保持该锁的时间较长,因此不提倡使用它。
//从2.6.11内核起,大内核锁可以通过配置内核使其变得可抢占(自旋锁是不可抢占的),这时它实质上是一个互斥锁,使用信号量实现。
//大内核锁的API包括:
//
//void lock_kernel(void);
//
//该函数用于得到大内核锁。它可以递归调用而不会导致死锁。
//
//void unlock_kernel(void);
//
//该函数用于释放大内核锁。当然必须与lock_kernel配对使用,调用了多少次lock_kernel,就需要调用多少次unlock_kernel。
//大内核锁的API使用非常简单,按照以下方式使用就可以了:
//lock_kernel(); //对被保护的共享资源的访问 … unlock_kernel();
//http://blog.csdn.net/universus/archive/2010/05/25/5623971.aspx
lock_kernel(); //初始化time ticket,时钟
tick_init(); //函数 tick_init() 很简单,调用 clockevents_register_notifier 函数向 clockevents_chain 通知链注册元素:
// tick_notifier。这个元素的回调函数指明了当时钟事件设备信息发生变化(例如新加入一个时钟事件设备等等)时,
//应该执行的操作,该回调函数为 tick_notify
//http://blogold.chinaunix.net/u3/97642/showart_2050200.html
boot_cpu_init(); //初始化页地址,当然对于arm这里是个空函数
//http://book.chinaunix.net/special/ebook/PrenticeHall/PrenticeHallPTRTheLinuxKernelPrimer/0131181637/ch08lev1sec5.html
page_address_init(); /*打印KER_NOTICE,这里的KER_NOTICE是字符串<5>*/
printk(KERN_NOTICE); /*打印以下linux版本信息:
“Linux version 2.6.22.6 (book@book-desktop) (gcc version 3.4.5) #1 Fri Jun 16 00:55:53 CST 2017” */
printk(linux_banner); //系结构相关的内核初始化过程,处理uboot传递进来的atag参数( setup_memory_tags()和setup_commandline _tags() )
//http://www.cublog.cn/u3/94690/showart_2238008.html
setup_arch(&command_line); //处理启动命令,这里就是设置的cmd_line,
//保存未改变的comand_line到字符数组static_command_line[] 中。
//保存 boot_command_line到字符数组saved_command_line[]中
setup_command_line(command_line); unwind_setup(); //如果没有定义CONFIG_SMP宏,则这个函数为空函数。
//如果定义了CONFIG_SMP宏,则这个setup_per_cpu_areas()函数给每个CPU分配内存,
//并拷贝.data.percpu段的数据。为系统中的每个CPU的per_cpu变量申请空间。
setup_per_cpu_areas(); //定义在include/asm-x86/smp.h。
//如果是SMP环境,则设置boot CPU的一些数据。在引导过程中使用的CPU称为boot CPU
smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */
/* 进程调度器初始化 */
sched_init(); /* 禁止内核抢占 */
preempt_disable(); //设置node 和 zone 数据结构
//内存管理的讲解:http://blog.chinaunix.net/space.php?uid=361890&do=blog&cuid=2146541
build_all_zonelists(NULL); //初始化page allocation相关结构
page_alloc_init(); /* 打印Linux启动命令行参数 */
printk(KERN_NOTICE "Kernel command line: %s/n", boot_command_line); //解析内核参数
//对内核参数的解析:http://hi.baidu.com/yuhuntero/blog/item/654a7411e45ce519b8127ba9.html
parse_early_param();
parse_args("Booting kernel", static_command_line, __start___param,
__stop___param - __start___param,
&unknown_bootoption); /*
* These use large bootmem allocations and must precede
* kmem_cache_init()
*/
//初始化hash表,以便于从进程的PID获得对应的进程描述指针,按照实际的物理内存初始化pid hash表
//这里涉及到进程管理http://blog.csdn.net/satanwxd/archive/2010/03/27/5422053.aspx
pidhash_init(); //初始化VFS的两个重要数据结构dcache和inode的缓存。
//http://blog.csdn.net/yunsongice/archive/2011/02/01/6171324.aspx
vfs_caches_init_early(); //把编译期间,kbuild设置的异常表,也就是__start___ex_table和__stop___ex_table之中的所有元素进行排序
sort_main_extable(); //初始化中断向量表
//http://blog.csdn.net/yunsongice/archive/2011/02/01/6171325.aspx
trap_init(); //memory map初始化
//http://blog.csdn.net/huyugv_830913/archive/2010/09/15/5886970.aspx
mm_init(); /*
* Set up the scheduler prior starting any interrupts (such as the
* timer interrupt). Full topology setup happens at smp_init()
* time - but meanwhile we still have a functioning scheduler.
*/
//核心进程调度器初始化,调度器的初始化的优先级要高于任何中断的建立,
//并且初始化进程0,即idle进程,但是并没有设置idle进程的NEED_RESCHED标志,
//所以还会继续完成内核初始化剩下的事情。
//这里仅仅为进程调度程序的执行做准备。
//它所做的具体工作是调用init_bh函数(kernel/softirq.c)把timer,tqueue,immediate三个人物队列加入下半部分的数组
sched_init(); /*
* Disable preemption - early bootup scheduling is extremely
* fragile until we cpu_idle() for the first time.
*/
//抢占计数器加1
preempt_disable(); //检查中断是否打开,如果已经打开,则关闭中断
if (!irqs_disabled()) {
printk(KERN_WARNING "start_kernel(): bug: interrupts were "
"enabled *very* early, fixing it/n");
local_irq_disable();
} sort_main_extable();
/*
* trap_init函数完成对系统保留中断向量(异常、非屏蔽中断以及系统调用)
* 的初始化,init_IRQ函数则完成其余中断向量的初始化
*/
trap_init(); //Read-Copy-Update的初始化
//RCU机制是Linux2.6之后提供的一种数据一致性访问的机制,
//从RCU(read-copy-update)的名称上看,我们就能对他的实现机制有一个大概的了解,
//在修改数据的时候,首先需要读取数据,然后生成一个副本,对副本进行修改,
//修改完成之后再将老数据update成新的数据,此所谓RCU。
//http://blog.ednchina.com/tiloog/193361/message.aspx
//http://blogold.chinaunix.net/u1/51562/showart_1341707.html
rcu_init(); //初始化IRQ中断和终端描述符。
//初始化系统中支持的最大可能的中断描述结构struct irqdesc变量数组irq_desc[NR_IRQS],
//把每个结构变量irq_desc[n]都初始化为预先定义好的坏中断描述结构变量bad_irq_desc,
//并初始化该中断的链表表头成员结构变量pend
init_IRQ(); /* 初始化hash表,便于从进程的PID获得对应的进程描述符指针 */
pidhash_init(); //初始化定时器Timer相关的数据结构
//http://www.ibm.com/developerworks/cn/linux/l-cn-clocks/index.html
init_timers(); //对高精度时钟进行初始化
hrtimers_init(); //软中断初始化
//http://blogold.chinaunix.net/u1/51562/showart_494363.html
softirq_init(); //初始化时钟源
timekeeping_init(); //初始化系统时间,
//检查系统定时器描述结构struct sys_timer全局变量system_timer是否为空,
//如果为空将其指向dummy_gettimeoffset()函数。
//http://www.ibm.com/developerworks/cn/linux/l-cn-clocks/index.html
time_init(); //profile只是内核的一个调试性能的工具,
//这个可以通过menuconfig中的Instrumentation Support->profile打开。
//http://www.linuxdiyf.com/bbs//thread-71446-1-1.html
profile_init(); /*if判断中断是否打开,如果已经打开,打印数据*/
if (!irqs_disabled())
printk(KERN_CRIT "start_kernel(): bug: interrupts were enabled early/n"); //与开始的early_boot_irqs_off相对应
early_boot_irqs_on(); //与local_irq_disbale相对应,开CPU中断
local_irq_enable(); /*
* HACK ALERT! This is early. We're enabling the console before
* we've done PCI setups etc, and console_init() must be aware of
* this. But we do want output early, in case something goes wrong.
*/
//初始化控制台以显示printk的内容,在此之前调用的printk,只是把数据存到缓冲区里,
//只有在这个函数调用后,才会在控制台打印出内容
//该函数执行后可调用printk()函数将log_buf中符合打印级别要求的系统信息打印到控制台上。
console_init(); if (panic_later)
panic(panic_later, panic_param); //如果定义了CONFIG_LOCKDEP宏,那么就打印锁依赖信息,否则什么也不做
lockdep_info(); /*
* Need to run this when irqs are enabled, because it wants
* to self-test [hard/soft]-irqs on/off lock inversion bugs
* too:
*/
//如果定义CONFIG_DEBUG_LOCKING_API_SELFTESTS宏
//则locking_selftest()是一个空函数,否则执行锁自测
locking_selftest(); #ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start && !initrd_below_start_ok &&
page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - "
"disabling it./n",
page_to_pfn(virt_to_page((void *)initrd_start)),
min_low_pfn);
initrd_start = ;
}
#endif /* 虚拟文件系统的初始化 */
vfs_caches_init_early();
cpuset_init_early();
mem_init(); /* slab初始化 */
kmem_cache_init(); //是否是对SMP的支持,单核是否需要??这个要分析
setup_per_cpu_pageset(); numa_policy_init(); if (late_time_init)
late_time_init(); //calibrate_delay()函数可以计算出cpu在一秒钟内执行了多少次一个极短的循环,
//计算出来的值经过处理后得到BogoMIPS 值,
//Bogo是Bogus(伪)的意思,MIPS是millions of instructions per second(百万条指令每秒)的缩写。
//这样我们就知道了其实这个函数是linux内核中一个cpu性能测试函数。
//http://blogold.chinaunix.net/u2/86768/showart_2196664.html
calibrate_delay(); //PID是process id的缩写
//http://blog.csdn.net/satanwxd/archive/2010/03/27/5422053.aspx
pidmap_init(); /* 接下来的函数中,大多数都是为有关的管理机制建立专用的slab缓存 */
pgtable_cache_init(); /* 初始化优先级树index_bits_to_maxindex数组 */
prio_tree_init(); //来自mm/rmap.c
//分配一个anon_vma_cachep作为anon_vma的slab缓存。
//这个技术是PFRA(页框回收算法)技术中的组成部分。
//这个技术为定位而生——快速的定位指向同一页框的所有页表项。
anon_vma_init(); #ifdef CONFIG_X86
if (efi_enabled)
efi_enter_virtual_mode();
#endif //根据物理内存大小计算允许创建进程的数量
//http://www.jollen.org/blog/2006/11/jollen_linux_3_fork_init.html
fork_init(totalram_pages); //给进程的各种资源管理结构分配了相应的对象缓存区
//http://www.shangshuwu.cn/index.php/Linux内核的进程创建
proc_caches_init(); //创建 buffer_head SLAB 缓存
buffer_init(); unnamed_dev_init(); //初始化key的management stuff
key_init(); //关于系统安全的初始化,主要是访问控制
//http://blog.csdn.net/nhczp/archive/2008/04/29/2341194.aspx
security_init(); //调用kmem_cache_create()函数来为VFS创建各种SLAB分配器缓存
//包括:names_cachep、filp_cachep、dquot_cachep和bh_cachep等四个SLAB分配器缓存
vfs_caches_init(totalram_pages); radix_tree_init(); //创建信号队列
signals_init(); /* rootfs populating might need page-writeback */
//回写相关的初始化
//http://blog.csdn.net/yangp01/archive/2010/04/06/5454822.aspx \
page_writeback_init(); #ifdef CONFIG_PROC_FS
proc_root_init();
#endif //http://blogold.chinaunix.net/u1/51562/showart_1777937.html
cpuset_init(); ////进程状态初始化,实际上就是分配了一个存储线程状态的高速缓存
taskstats_init_early(); delayacct_init(); //测试CPU的各种缺陷,记录检测到的缺陷,以便于内核的其他部分以后可以使用他们工作。
check_bugs(); //电源相关的初始化
//http://blogold.chinaunix.net/u/548/showart.php?id=377952
acpi_early_init(); /* before LAPIC and SMP init */ //接着进入rest_init()创建init进程,创建根文件系统,启动应用程序
rest_init();
}

2、start_kernel调用层次。简略的写出start_kernel函数的调用层次后面一步步分析它。其实可以概括为读取uboot传入的tag参数并且处理它们。

假设uboot传入的命令行参数为bootargs=noinitrd root=/dev/mtdblock3 init=/linuxrc console=ttySAC0。

a、其中setup_arch、setup_command_line 、do_early_para、unknown_bootoption这几个函数可以概括为处理uboot传入的tag参数。主要处理ATAG_MEM参数、ATAG_CMDLINE参数部分参数

b、console_init根据处理后的console=ttySAC0命令行参数选择合适的控制台

c、其中rest_init是start_kernel调用的最后一个函数主要用来根据 处理后的root=/dev/mtdblock3、init=/linuxrc命令后参数分别挂接合适的根文件系统与第一个init进程的启动。

start_kernel
setup_arch //解析UBOOT传入的启动参数
setup_command_line //解析UBOOT传入的启动参数
do_early_param //解析early参数,uboot中没传这个参数
unknown_bootoption//解析到了命令行参数,saved_root_name在这块初始化
console_init();//控制台初始化
rest_init
kernel_thread
kernel_init
prepare_namespace //解析命令行参数解析成功挂接在哪个分区
mount_root//挂接根文件系统
init_post
//执行应用程序

以上就是start_kernel函数的简单介绍。

上一篇:AU3学习资源


下一篇:HDU2829