算法说明:
归并排序的思路就是分而治之,将数组中的数字递归折半进行排序。 递归到最底层就只剩下有两个数字进行比较,再从底层往下进行排序合并。最终得出结果。
同样,语言描述可能对于不知道这个算法的人来说,理解的比较吃力,所以还是举个例子来简单说明一下。
首先,测试数据是int[] arrayData = { 5, 9, 6, 7, 4, 1, 2, 3, 8 }; 一共是9个元素。
然后拿visio画图,来对于归并排序的分而治之进行一下简单的剖析。
整体排序流程大概就是如上图了。 首先先是递归拆分,递归拆分到最底层后,再进行排序,如果参考下边的代码的话,那么Sort方法就是在往最底层递归,Merge方法就是在进行合并。
另外吐个嘈,上边那个图画的很累啊……
时间复杂度:
O(nlgn)
空间复杂度:
O(n+lgn)
代码:
语言:Java
/*
* 归并排序
*/
public class MergeSort {
public static void main(String[] args) {
int[] arrayData = { 5, 9, 6, 7, 4, 1, 2, 3, 8 };
int[] arrayResult = MergeSortMethod(arrayData);
for (int integer : arrayResult) {
System.out.print(integer);
System.out.print(" ");
}
} public static int[] MergeSortMethod(int[] arrayData) {
int[] arrayResult = new int[arrayData.length];
Sort(arrayData, 0, arrayData.length - 1, arrayResult);
return arrayResult;
} public static void Sort(int[] arraySource, int leftIndex, int rightIndex,
int[] arrayResult) {
if (leftIndex < rightIndex) {
int middleIndex = (leftIndex + rightIndex) / 2;
Sort(arraySource, leftIndex, middleIndex, arrayResult);
Sort(arraySource, middleIndex + 1, rightIndex, arrayResult);
Merge(arraySource, leftIndex, middleIndex, rightIndex, arrayResult);
}
} // 进到merge时,leftIndex至middleIndex的数据已被排好序了。
// middleIndex+1至rightIndex的数字也已经被排好序了
// 所以merge就是把排好序的数字合并到arrayResult中
public static void Merge(int[] arraySource, int leftIndex, int middleIndex,
int rightIndex, int[] arrayResult) {
int i = leftIndex;
int j = middleIndex + 1;
int k = 0;
// leftIndex至middleIndex 与 middleIndex+1至rightIndex
// 进行比较,左右两个数组哪个先循环完毕就跳出while
while (i <= middleIndex && j <= rightIndex) {
if (arraySource[i] <= arraySource[j]) {
arrayResult[k++] = arraySource[j++];
} else {
arrayResult[k++] = arraySource[i++];
}
} while (i <= middleIndex) {
arrayResult[k++] = arraySource[i++];
} while (j <= rightIndex) {
arrayResult[k++] = arraySource[j++];
} for (int l = 0; l < k; l++) {
arraySource[leftIndex + l] = arrayResult[l];
}
}
}
结果:
9 8 7 6 5 4 3 2 1
时间复杂度论证:Merge方法的时间复杂度是n ,然后Sort方法因为是二叉树性质的递归,所以时间复杂度是log2n,那么归并排序的复杂度就是O(nlog2n)。 log2n的时间耗费对于数学基础不好的朋友来说可能理解起来很吃力(例如我),所以大家可以参考http://xwrwc.blog.163.com/blog/static/46320003201141582544245/
空间复杂度论证: Merge因为要使用一个临时数组,所以空间复杂度是n。又另因为是递归迭代的,所以递归也占用空间复杂度log2n。所以归并排序的空间复杂度是O(n+log2n)