浅谈线段树 Segment Tree

   众所周知,线段树是algo中很重要的一项!

 一.简介

    

  线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。

  使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,实际应用时一般还要开4N的数组以免越界,因此有时需要离散化让空间压缩。浅谈线段树 Segment Tree

   二.用途

  单点 : 查询(query)修改(add,mul)

    区间 : 查询(区间和),修改,最大值(max),最小值(min)。

  浅谈线段树 Segment Tree

  三. 实现方式

  1.建树

   由于每个点都表示一个区间,所以他有很多信息(左儿子,右儿子,区间sum) 所以我们用结构体存. 因为之后要用到懒标记,所以结构体还有两个懒标记。

  懒标记   : 以上图为例,如果想在1 - 6区间内加一,我们就将这个信息从根节点传递到下一层,这时2,3点都有一个add = 1的懒标记,这样就表示已经加过1了,下次如果还要加,那么直接加在懒标记上。就比如你挣了一笔钱,暂时不用,就存在银行里了。之后如果求解需要递归,那么这个懒标记就向下传,并且传完后自己要清零!(这样更新后的状态就是 原状态 + 子区间点的个数 * 传下里的懒标记,(example  sum = 5(原状态)+ 4(区间里有4个数,都加了个2) * 2(懒标记))-------很玄学

  乘法的懒标记(luogu p3373):需要特别注意下

    比如 懒标记原本为2 + 3
  现在传下一个乘8 那么就变为(2 + 3) * 8
  然后再传一个加三,就会变成(2 + 3 + 3) * 8
  所以我们这么存 2 * 8 + 3 * 8
  这样加3后值才是正确的!

  上代码

代码中% P 为题目要求

 struct Node {
int l, r;
ll sum;
ll add, mul; Node() {
l = r = sum = add = ;
mul = ;
} void update_add(ll value) {
add = (add + value) % P;
sum = (sum + (r - l + ) * value) % P;
} void update_mul(ll value) {
sum = (sum * value) % P;
mul = (mul * value) % P;
add = (add * value) % P;
}
} t[N << ];

我的建树可能比较怪,当递归到根节点再cin,一边递归一边更新(push_up,后面有)

 void build_tree(int p, int l, int r) {
t[p].l = l, t[p].r = r;
if (l == r) {
cin >> t[p].sum;
return;
}
int mid = (t[p].l + t[p].r) >> ;
build_tree(lc(p), l, mid);
build_tree(rc(p), mid + , r);
push_up(p);
}

左儿子右儿子

inline int lc(int p) {
return p << ;
} inline int rc(int p) {
return p << | ;
}

向上push_up更新信息(sum),向下传懒标记(push_down) 切记传完后自己状态要恢复哦!

 void push_up(int p) {
t[p].sum = t[lc(p)].sum + t[rc(p)].sum;
} void push_down(int p) {
if (t[p].mul != ) {
t[lc(p)].update_mul(t[p].mul);
t[rc(p)].update_mul(t[p].mul);
t[p].mul = ;
}
if (t[p].add) {
t[lc(p)].update_add(t[p].add);
t[rc(p)].update_add(t[p].add);
t[p].add = ;
}
}

Å%%%Then

当我们进行区间改动时

(黑色为总区间,红色为需要修改的区间)

如果当前区间是全部区间的子集————那很好,咱们可以直接修改

浅谈线段树 Segment Tree

如果当前区间和总区间有交集,那么就递归,找到第一个完全包含他的区间,然后修改,再递归上去

浅谈线段树 Segment Tree

上代码!!!

 void update1(int p, int l, int r, ll value) {//乘法更新
if (t[p].l >= l && t[p].r <= r) {
t[p].update_mul(value);
return;
}
push_down(p);
int mid = (t[p].l + t[p].r) >> ;
if (l <= mid) update1(lc(p), l, r, value);
if (r > mid) update1(rc(p), l, r, value);
push_up(p);
} void update2(int p, int l, int r, ll value) {//加法更新
if (t[p].l >= l && t[p].r <= r) {
t[p].update_add(value);
return;
}
push_down(p);
int mid = (t[p].l + t[p].r) >> ;
if (l <= mid) update2(lc(p), l, r, value);
if (r > mid) update2(rc(p), l, r, value);
push_up(p);
} ll query(int p, int l, int r) {//区间查询,如果是单点差距的话l == r
if (t[p].l >= l && t[p].r <= r) {
return t[p].sum % P;
}
push_down(p);
ll sum = ;
int mid = (t[p].l + t[p].r) >> ;
if (l <= mid) sum = (sum + query(lc(p), l, r)) % P;
if (r > mid) sum = (sum + query(rc(p), l, r)) % P;
return sum % P;
}

当然还可以求RMQ问题

 struct Node
{
ll minn,maxx;
}t[]; //build 里加几句
t[p].maxx = max(t[lc(p)].maxx,t[rp(p)].maxx);
t[p].minn = min(t[lc(p)].minn,t[rp(p)].minn); int ans1,ans2;
void new_query(int p,int l,int r)
{
if(t[p].l == l && t[p].r == r)
{
ans1 = max(ans1,t[p].maxx);
ans2 = max(ans2,t[p].minn);
return;
}
int mid = (t[p].l + t[p].r) >> ;
if(r <= mid)
query(lc(p),l,r);
else if (l > mid)
query(rc(p),l,r);
else
{
query(lc(p),l,mid);
query(rp(p),mid + ,r);
}
}

下面附上总代码(代码按照luogu 线段树2的模板打的,可AC)

 #include <iostream>
#include<algorithm>
using namespace std;
const int N = 1e5 + ;
typedef long long ll; ll P; struct Node {
int l, r;
ll sum;
ll add, mul;
// ll minn,mmax;
Node() {
l = r = sum = add = ;
mul = ;
} void update_add(ll value) {
add = (add + value) % P;
sum = (sum + (r - l + ) * value) % P;
} void update_mul(ll value) {
sum = (sum * value) % P;
mul = (mul * value) % P;
add = (add * value) % P;
}
} t[N << ]; inline int lc(int p) {
return p << ;
} inline int rc(int p) {
return p << | ;
} void push_up(int p) {
t[p].sum = t[lc(p)].sum + t[rc(p)].sum;
} void push_down(int p) {
if (t[p].mul != ) {
t[lc(p)].update_mul(t[p].mul);
t[rc(p)].update_mul(t[p].mul);
t[p].mul = ;
}
if (t[p].add) {
t[lc(p)].update_add(t[p].add);
t[rc(p)].update_add(t[p].add);
t[p].add = ;
}
} void build_tree(int p, int l, int r) {
t[p].l = l, t[p].r = r;
if (l == r) {
cin >> t[p].sum;
return;
}
int mid = (t[p].l + t[p].r) >> ;
build_tree(lc(p), l, mid);
build_tree(rc(p), mid + , r);
// t[p].maxx = max(t[lc(p)].maxx,t[rp(p)].maxx);
// t[p].minn = min(t[lc(p)].minn,t[rp(p)].minn);
push_up(p);
} void update1(int p, int l, int r, ll value) {
if (t[p].l >= l && t[p].r <= r) {
t[p].update_mul(value);
return;
}
push_down(p);
int mid = (t[p].l + t[p].r) >> ;
if (l <= mid) update1(lc(p), l, r, value);
if (r > mid) update1(rc(p), l, r, value);
push_up(p);
} void update2(int p, int l, int r, ll value) {
if (t[p].l >= l && t[p].r <= r) {
t[p].update_add(value);
return;
}
push_down(p);
int mid = (t[p].l + t[p].r) >> ;
if (l <= mid) update2(lc(p), l, r, value);
if (r > mid) update2(rc(p), l, r, value);
push_up(p);
} ll query(int p, int l, int r) {
if (t[p].l >= l && t[p].r <= r) {
return t[p].sum % P;
}
push_down(p);
ll sum = ;
int mid = (t[p].l + t[p].r) >> ;
if (l <= mid) sum = (sum + query(lc(p), l, r)) % P;
if (r > mid) sum = (sum + query(rc(p), l, r)) % P;
return sum % P;
}
/*int ans1,ans2;
void new_query(int p,int l,int r)
{
if(t[p].l == l && t[p].r == r)
{
ans1 = max(ans1,t[p].maxx);
ans2 = max(ans2,t[p].minn);
return;
}
int mid = (t[p].l + t[p].r) >> 1;
if(r <= mid)
new_query(lc(p),l,r);
else if (l > mid)
new_query(rc(p),l,r);
else
{
new_query(lc(p),l,mid);
new_query(rp(p),mid + 1,r);
}
}
*/ int main()
{
int n, m;
cin >> n >> m >> P;
build_tree(, , n);
while (m--) {
int op, l, r, num;
cin >> op >> l >> r;
if (op == || op == ) cin >> num;
if (op == ) update1(, l, r, num);
else if (op == ) update2(, l, r, num);
else cout << query(, l, r) << endl;
}
} //Juddav007 0.0

(all)

THANKS FOR WATCHING!

上一篇:HDU 2529 Shot (物理数学题)


下一篇:Python request SSL证书问题