本文基于 TiDB release-5.1进行分析,需要用到 Go 1.16以后的版本
所谓 Hash Join 就是在 join 的时候选择一张表作为 buildSide 表来构造哈希表,另外一张表作为 probeSide 表;然后对 probeSide 表的每一行数据都去这个哈希表中查找是否有匹配的数据。
根据上面的定义,看起来 Hash Join 貌似很好做,只需要弄一个大 map 然后遍历 probeSide 表的数据进行匹配就好了。但是作为一个高效的数据库, TiDB 会在这个过程做什么优化呢?
所以在阅读文章前先带着这几个疑问:
- 哪张表会成为 buildSide 表或 probeSide 表?
- buildSide 表来构造的哈希表是包含了 buildSide 表的所有数据吗?数据量太大会不会有问题?
- probeSide 表匹配 buildSide 表的时候是单线程匹配还是多线程匹配?如果是多线程匹配,那么如何分配匹配的数据呢?
下面我用这个例子来进行讲解:
CREATE TABLE test1 (a int , b int, c int, d int);
CREATE TABLE test2 (a int , b int, c int, d int);
然后查询执行计划:
explain select * from test1 t1 join test1 t2 on t1.a= t2.a ;
+-----------------------+--------+---------+-------------+--------------------------------------------------+
|id |estRows |task |access object|operator info |
+-----------------------+--------+---------+-------------+--------------------------------------------------+
|HashJoin_8 |12487.50|root | |inner join, equal:[eq(test.test1.a, test.test1.a)]|
|├─TableReader_15(Build)|9990.00 |root | |data:Selection_14 |
|│ └─Selection_14 |9990.00 |cop[tikv]| |not(isnull(test.test1.a)) |
|│ └─TableFullScan_13 |10000.00|cop[tikv]|table:t2 |keep order:false, stats:pseudo |
|└─TableReader_12(Probe)|9990.00 |root | |data:Selection_11 |
| └─Selection_11 |9990.00 |cop[tikv]| |not(isnull(test.test1.a)) |
| └─TableFullScan_10 |10000.00|cop[tikv]|table:t1 |keep order:false, stats:pseudo |
+-----------------------+--------+---------+-------------+--------------------------------------------------+
构建 Hash Join 执行器
TiDB 首先会根据 SQL 来构建相应的 Logic Plan;
然后将 Logic Plan 转成 Physical Plan,这里是转成 PhysicalHashJoin 作为 Physical Plan;
通过比较 Physical Plan 的代价,最后选择一个代价最小的 Physical Plan 构建执行器 executor;
之所以要讲一下这里是因为通过 Physical Plan 构建执行器的时候会判断是哪张表来做 buildSide 表 或 probeSide 表;
构建 Physical Plan
构建 Physical Plan 在exhaust_physical_plans.go文件的 getHashJoins 方法中:
func (p *LogicalJoin) getHashJoins(prop *property.PhysicalProperty) []PhysicalPlan {
...
joins := make([]PhysicalPlan, 0, 2)
switch p.JoinType {
case SemiJoin, AntiSemiJoin, LeftOuterSemiJoin, AntiLeftOuterSemiJoin:
joins = append(joins, p.getHashJoin(prop, 1, false))
case LeftOuterJoin:
joins = append(joins, p.getHashJoin(prop, 1, false))
joins = append(joins, p.getHashJoin(prop, 1, true))
case RightOuterJoin:
joins = append(joins, p.getHashJoin(prop, 0, false))
joins = append(joins, p.getHashJoin(prop, 0, true))
case InnerJoin:
joins = append(joins, p.getHashJoin(prop, 1, false))
joins = append(joins, p.getHashJoin(prop, 0, false))
}
return joins
}
这个方法会根据 Join 的类型分别调用 getHashJoin 方法创建 Physical Plan。 这里会创建多个 PhysicalHashJoin ,后面会选择一个代价最小的 Physical Plan 构建执行器。
需要注意的是 getHashJoin 后面两个参数:
func (p *LogicalJoin) getHashJoin(prop *property.PhysicalProperty, innerIdx int, useOuterToBuild bool) *PhysicalHashJoin
后面会根据 innerIdx 和 useOuterToBuild 决定哪张会成为 buildSide 表 或 probeSide 表;
选择效率最高的执行计划
构建好 Physical Plan 之后会遍历创建的 Plan 获取它的代价:
func (p *baseLogicalPlan) enumeratePhysicalPlans4Task(physicalPlans []PhysicalPlan, prop *property.PhysicalProperty, addEnforcer bool, planCounter *PlanCounterTp) (task, int64, error) {
var bestTask task = invalidTask
childTasks := make([]task, 0, len(p.children))
for _, pp := range physicalPlans {
childTasks = childTasks[:0]
for j, child := range p.children {
childTask, cnt, err := child.findBestTask(pp.GetChildReqProps(j), &PlanCounterDisabled)
...
childTasks = append(childTasks, childTask)
}
// Combine best child tasks with parent physical plan.
curTask := pp.attach2Task(childTasks...)
...
// Get the most efficient one.
if curTask.cost() < bestTask.cost() || (bestTask.invalid() && !curTask.invalid()) {
bestTask = curTask
}
}
return bestTask, ...
}
从这些 Plan 里面挑选出代价最小的返回。
通过执行计划构建执行器
获取到执行计划之后,会通过一系列的调用到 buildHashJoin 构建 HashJoinExec 作为 hash join 执行器:
我们来看一下 buildHashJoin:
func (b *executorBuilder) buildHashJoin(v *plannercore.PhysicalHashJoin) Executor {
// 构建左表 executor
leftExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
// 构建右表 executor
rightExec := b.build(v.Children()[1])
if b.err != nil {
return nil
}
// 构建
e := &HashJoinExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), leftExec, rightExec),
concurrency: v.Concurrency,
// join 类型
joinType: v.JoinType,
isOuterJoin: v.JoinType.IsOuterJoin(),
useOuterToBuild: v.UseOuterToBuild,
}
...
//选择 buildSideExec 和 probeSideExec
if v.UseOuterToBuild {
if v.InnerChildIdx == 1 { // left join InnerChildIdx =1
e.buildSideExec, e.buildKeys = leftExec, v.LeftJoinKeys
e.probeSideExec, e.probeKeys = rightExec, v.RightJoinKeys
e.outerFilter = v.LeftConditions
} else {
e.buildSideExec, e.buildKeys = rightExec, v.RightJoinKeys
e.probeSideExec, e.probeKeys = leftExec, v.LeftJoinKeys
e.outerFilter = v.RightConditions
}
} else {
if v.InnerChildIdx == 0 {
e.buildSideExec, e.buildKeys = leftExec, v.LeftJoinKeys
e.probeSideExec, e.probeKeys = rightExec, v.RightJoinKeys
e.outerFilter = v.RightConditions
} else {
e.buildSideExec, e.buildKeys = rightExec, v.RightJoinKeys
e.probeSideExec, e.probeKeys = leftExec, v.LeftJoinKeys
e.outerFilter = v.LeftConditions
}
}
childrenUsedSchema := markChildrenUsedCols(v.Schema(), v.Children()[0].Schema(), v.Children()[1].Schema())
e.joiners = make([]joiner, e.concurrency)
for i := uint(0); i < e.concurrency; i++ {
// 创建 joiner 用于 Join 匹配
e.joiners[i] = newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues,
v.OtherConditions, lhsTypes, rhsTypes, childrenUsedSchema)
}
...
return e
}
这段主要的逻辑就是根据最优的 Physical Plan 来构建 HashJoinExec。
其中需要主要的是,这里会根据 UseOuterToBuild 和 InnerChildIdx 来决定 buildSide 表和 probeSide 表。
比如在构建 left join 的 Physical Plan 的时候:
func (p *LogicalJoin) getHashJoins(prop *property.PhysicalProperty) []PhysicalPlan {
...
joins := make([]PhysicalPlan, 0, 2)
switch p.JoinType {
case LeftOuterJoin:
joins = append(joins, p.getHashJoin(prop, 1, false))
joins = append(joins, p.getHashJoin(prop, 1, true))
...
}
return joins
}
传入的 getHashJoin 方法中第一个参数代表 InnerChildIdx,第二个参数代表 UseOuterToBuild。这里会生成两个 Physical Plan ,然后会根据代价计算出最优的那个;
进入到 buildHashJoin 方法的时候,可以发现 buildSide 表和 probeSide 表是最后和 Physical Plan 有关:
func (b *executorBuilder) buildHashJoin(v *plannercore.PhysicalHashJoin) Executor {
...
//选择 buildSideExec 和 probeSideExec
if v.UseOuterToBuild {
if v.InnerChildIdx == 1 { // left join InnerChildIdx =1
e.buildSideExec, e.buildKeys = leftExec, v.LeftJoinKeys
e.probeSideExec, e.probeKeys = rightExec, v.RightJoinKeys
e.outerFilter = v.LeftConditions
} else {
...
}
} else {
if v.InnerChildIdx == 0 {
...
} else {
e.buildSideExec, e.buildKeys = rightExec, v.RightJoinKeys
e.probeSideExec, e.probeKeys = leftExec, v.LeftJoinKeys
e.outerFilter = v.LeftConditions
}
}
...
return e
}
运行Hash Join 执行器
在构建完 HashJoinExec 之后就到了获取数据的环节,TiDB 会通过 Next 方法一次性从执行器里面获取一批数据,具体获取数据的方法在 HashJoinExec 的 Next 里面。
func (e *HashJoinExec) Next(ctx context.Context, req *chunk.Chunk) (err error) {
if !e.prepared {
e.buildFinished = make(chan error, 1)
// 异步根据buildSide表中数据, 构建 hashtable
go util.WithRecovery(func() {
defer trace.StartRegion(ctx, "HashJoinHashTableBuilder").End()
e.fetchAndBuildHashTable(ctx)
}, e.handleFetchAndBuildHashTablePanic)
// 读取probeSide表和构建的hashtable做匹配,获取数据放入joinResultCh
e.fetchAndProbeHashTable(ctx)
e.prepared = true
}
if e.isOuterJoin {
atomic.StoreInt64(&e.requiredRows, int64(req.RequiredRows()))
}
req.Reset()
// 获取结果数据
result, ok := <-e.joinResultCh
if !ok {
return nil
}
if result.err != nil {
e.finished.Store(true)
return result.err
}
// 将数据返回放入到 req Chunk 中
req.SwapColumns(result.chk)
result.src <- result.chk
return nil
}
Next 方法获取数据分为三步:
- 调用 fetchAndBuildHashTable 方法异步根据buildSide表中数据, 构建 hashtable;
- 调用 fetchAndProbeHashTable 方法读取probeSide表和构建的hashtable做匹配,获取数据放入joinResultCh;
- 从 joinResultCh 中获取数据;
fetchAndBuildHashTable 构建 hash table
func (e *HashJoinExec) fetchAndBuildHashTable(ctx context.Context) {
...
buildSideResultCh := make(chan *chunk.Chunk, 1)
doneCh := make(chan struct{})
go util.WithRecovery(
func() {
defer trace.StartRegion(ctx, "HashJoinBuildSideFetcher").End()
// 获取 buildSide 表中的数据,将数据放入到 buildSideResultCh 中
e.fetchBuildSideRows(ctx, buildSideResultCh, doneCh)
}, ...,
)
// 从 buildSideResultCh 中读取数据构建 rowContainer
err := e.buildHashTableForList(buildSideResultCh)
if err != nil {
e.buildFinished <- errors.Trace(err)
close(doneCh)
}
...
}
这里构建 hash map 的过程分为两部分:
- 异步调用 fetchBuildSideRows 循环获取buildSide表中数据,放入到 buildSideResultCh 中;
- 从 buildSideResultCh 中读取数据构建 rowContainer,rowContainer 相当于 hash map 存放数据的地方。
我们下面来看一下 buildHashTableForList:
func (e *HashJoinExec) buildHashTableForList(buildSideResultCh <-chan *chunk.Chunk) error {
e.rowContainer = newHashRowContainer(e.ctx, int(e.buildSideEstCount), hCtx)
...
// 读取 channel 数据
for chk := range buildSideResultCh {
if e.finished.Load().(bool) {
return nil
}
if !e.useOuterToBuild {
// 将数据存入到 rowContainer 中
err = e.rowContainer.PutChunk(chk, e.isNullEQ)
} else {
...
}
if err != nil {
return err
}
}
return nil
}
这里会将 chunk 的数据通过 PutChunk 存入到 rowContainer 中。
func (c *hashRowContainer) PutChunk(chk *chunk.Chunk, ignoreNulls []bool) error {
return c.PutChunkSelected(chk, nil, ignoreNulls)
}
func (c *hashRowContainer) PutChunkSelected(chk *chunk.Chunk, selected, ignoreNulls []bool) error {
start := time.Now()
defer func() { c.stat.buildTableElapse += time.Since(start) }()
chkIdx := uint32(c.rowContainer.NumChunks())
// 将数据存放到 RowContainer 中,内存中放不下会存放到磁盘中
err := c.rowContainer.Add(chk)
if err != nil {
return err
}
numRows := chk.NumRows()
c.hCtx.initHash(numRows)
hCtx := c.hCtx
// 根据chunk中的column值构建hash值
for keyIdx, colIdx := range c.hCtx.keyColIdx {
ignoreNull := len(ignoreNulls) > keyIdx && ignoreNulls[keyIdx]
err := codec.HashChunkSelected(c.sc, hCtx.hashVals, chk, hCtx.allTypes[colIdx], colIdx, hCtx.buf, hCtx.hasNull, selected, ignoreNull)
if err != nil {
return errors.Trace(err)
}
}
// 根据hash值构建hash table
for i := 0; i < numRows; i++ {
if (selected != nil && !selected[i]) || c.hCtx.hasNull[i] {
continue
}
key := c.hCtx.hashVals[i].Sum64()
rowPtr := chunk.RowPtr{ChkIdx: chkIdx, RowIdx: uint32(i)}
c.hashTable.Put(key, rowPtr)
}
return nil
}
对于 rowContainer 来说,数据存放分为两部分:一部分是存放 chunk 数据到 rowContainer 的 records 或 recordsInDisk 里面;另一部分是构建 hash table 存放 key 值以及将数据的索引作为 value。
func (c *RowContainer) Add(chk *Chunk) (err error) {
...
// 如果内存已经满了,那么会写入到磁盘中
if c.alreadySpilled() {
if c.m.spillError != nil {
return c.m.spillError
}
err = c.m.recordsInDisk.Add(chk)
} else {
// 否则写入内存
c.m.records.Add(chk)
}
return
}
RowContainer 会根据内存使用量来判断是否要存磁盘还是存内存。
多线程执行 hash Join
hash Join 的过程是通过 fetchAndProbeHashTable 方法来执行的,这个方法比较有意思,向我们展示了如何在多线程中使用 chanel 进行数据传递。
func (e *HashJoinExec) fetchAndProbeHashTable(ctx context.Context) {
// 初始化数据传递的 channel
e.initializeForProbe()
e.joinWorkerWaitGroup.Add(1)
// 循环获取 ProbeSide 表中的数据,将数据存放到 probeSideResult channel中
go util.WithRecovery(func() {
defer trace.StartRegion(ctx, "HashJoinProbeSideFetcher").End()
e.fetchProbeSideChunks(ctx)
}, e.handleProbeSideFetcherPanic)
probeKeyColIdx := make([]int, len(e.probeKeys))
for i := range e.probeKeys {
probeKeyColIdx[i] = e.probeKeys[i].Index
}
// 启动多个 join workers 去buildSide表和ProbeSide 表匹配数据
for i := uint(0); i < e.concurrency; i++ {
e.joinWorkerWaitGroup.Add(1)
workID := i
go util.WithRecovery(func() {
defer trace.StartRegion(ctx, "HashJoinWorker").End()
e.runJoinWorker(workID, probeKeyColIdx)
}, e.handleJoinWorkerPanic)
}
go util.WithRecovery(e.waitJoinWorkersAndCloseResultChan, nil)
}
整个 hash Join 的执行分为三个部分:
- 由于在 hash Join 过程中是通过多线程处理的,所以会用到 channel 进行数据传递,所以第一步是调用 initializeForProbe 初始化数据传递的 channel;
- 然后会异步的调用 fetchProbeSideChunks 从 ProbeSide 表获取数据;
- 接下来会启动多个线程调用 runJoinWorker 方法启动多个 Join Worker 来进行 hash Join ;
需要注意的是,这里我们将查询probeSide表数据的线程称作 probeSideExec worker;将执行 join 匹配的线程称作 join worker,它的数量由 concurrency 决定,默认是5个。
initializeForProbe
我们先来看看 initializeForProbe:
func (e *HashJoinExec) initializeForProbe() {
// 用于probeSideExec worker保存probeSide表数据,用来给join worker做关联使用
e.probeResultChs = make([]chan *chunk.Chunk, e.concurrency)
for i := uint(0); i < e.concurrency; i++ {
e.probeResultChs[i] = make(chan *chunk.Chunk, 1)
}
// 用于将已被join workers使用过的chunks给probeSideExec worker复用
e.probeChkResourceCh = make(chan *probeChkResource, e.concurrency)
for i := uint(0); i < e.concurrency; i++ {
e.probeChkResourceCh <- &probeChkResource{
chk: newFirstChunk(e.probeSideExec),
dest: e.probeResultChs[i],
}
}
// 用于将可以重复使用的join result chunks从main thread传递到join worker
e.joinChkResourceCh = make([]chan *chunk.Chunk, e.concurrency)
for i := uint(0); i < e.concurrency; i++ {
e.joinChkResourceCh[i] = make(chan *chunk.Chunk, 1)
e.joinChkResourceCh[i] <- newFirstChunk(e)
}
// 用于将join结果chunks从 join worker传递到 main thread
e.joinResultCh = make(chan *hashjoinWorkerResult, e.concurrency+1)
}
这个方法主要就是初始化4个 channel 对象。
probeResultChs:用于保存probeSide表查出来的数据;
probeChkResourceCh:用于将已被join workers使用过的chunks给probeSideExec worker复用;
joinChkResourceCh:也是用于传递 chunks,主要是给 join worker 复用;
joinResultCh:用于传递 join worker 匹配的结果给 main thread;
fetchProbeSideChunks
下面我们再来看看异步 fetchProbeSideChunks的过程:
func (e *HashJoinExec) fetchProbeSideChunks(ctx context.Context) {
for {
...
var probeSideResource *probeChkResource
select {
case <-e.closeCh:
return
case probeSideResource, ok = <-e.probeChkResourceCh:
}
// 获取可用的 chunk
probeSideResult := probeSideResource.chk
if e.isOuterJoin {
required := int(atomic.LoadInt64(&e.requiredRows))
probeSideResult.SetRequiredRows(required, e.maxChunkSize)
}
// 获取数据存入到 probeSideResult
err := Next(ctx, e.probeSideExec, probeSideResult)
...
//将有数据的chunk.Chunk放入到dest channel中
probeSideResource.dest <- probeSideResult
}
}
在理清楚各个 channel 的作用之后就可以很容易的理解,这里主要就是获取可用的 chunk,然后调用 Next 将数据放入到 chunk 中,最后将 chunk 放入到dest channel中。
runJoinWorker
最后我们来看看 Join Worker 的实现:
func (e *HashJoinExec) runJoinWorker(workerID uint, probeKeyColIdx []int) {
...
var (
probeSideResult *chunk.Chunk
selected = make([]bool, 0, chunk.InitialCapacity)
)
// 获取 hashjoinWorkerResult
ok, joinResult := e.getNewJoinResult(workerID)
if !ok {
return
}
emptyProbeSideResult := &probeChkResource{
dest: e.probeResultChs[workerID],
}
hCtx := &hashContext{
allTypes: e.probeTypes,
keyColIdx: probeKeyColIdx,
}
// 循环获取 probeSideResult
for ok := true; ok; {
if e.finished.Load().(bool) {
break
}
select {
case <-e.closeCh:
return
// probeResultChs 里存放的是probeSideExec worker查询出来的数据
case probeSideResult, ok = <-e.probeResultChs[workerID]:
}
if !ok {
break
}
// 将join匹配的数据放入到joinResult的chunk里面
ok, joinResult = e.join2Chunk(workerID, probeSideResult, hCtx, joinResult, selected)
if !ok {
break
}
// 使用完之后,将chunk重置,重新放回 probeChkResourceCh 给probeSideExec worker使用
probeSideResult.Reset()
emptyProbeSideResult.chk = probeSideResult
e.probeChkResourceCh <- emptyProbeSideResult
}
...
}
由于 probeSideExec worker 会将数据放入到 probeResultChs 中,所以这里会循环获取它里面的数据,然后调用 join2Chunk 进行数据匹配。
func (e *HashJoinExec) join2Chunk(workerID uint, probeSideChk *chunk.Chunk, hCtx *hashContext, joinResult *hashjoinWorkerResult,
selected []bool) (ok bool, _ *hashjoinWorkerResult) {
var err error
// 校验probeSide chunk查询到的数据是否可用来匹配
selected, err = expression.VectorizedFilter(e.ctx, e.outerFilter, chunk.NewIterator4Chunk(probeSideChk), selected)
if err != nil {
joinResult.err = err
return false, joinResult
}
//probeSide表的hash,用于匹配
hCtx.initHash(probeSideChk.NumRows())
for keyIdx, i := range hCtx.keyColIdx {
ignoreNull := len(e.isNullEQ) > keyIdx && e.isNullEQ[keyIdx]
err = codec.HashChunkSelected(e.rowContainer.sc, hCtx.hashVals, probeSideChk, hCtx.allTypes[i], i, hCtx.buf, hCtx.hasNull, selected, ignoreNull)
if err != nil {
joinResult.err = err
return false, joinResult
}
}
//遍历probeSide表查询到的行记录
for i := range selected {
...
if !selected[i] || hCtx.hasNull[i] { // process unmatched probe side rows
e.joiners[workerID].onMissMatch(false, probeSideChk.GetRow(i), joinResult.chk)
} else { // process matched probe side rows
// 获取行记录的 probeKey 和 probeRow
probeKey, probeRow := hCtx.hashVals[i].Sum64(), probeSideChk.GetRow(i)
ok, joinResult = e.joinMatchedProbeSideRow2Chunk(workerID, probeKey, probeRow, hCtx, joinResult)
if !ok {
return false, joinResult
}
}
// 如果joinResult的chunk已经满了,那么将数据放入到 joinResultCh,再重新获取 joinResult
if joinResult.chk.IsFull() {
e.joinResultCh <- joinResult
ok, joinResult = e.getNewJoinResult(workerID)
if !ok {
return false, joinResult
}
}
}
return true, joinResult
}
数据匹配这里也大致分为以下几个步骤:
- 校验probeSide chunk查询到的数据是否可用来匹配;
- 获取到 probeSide chunk 的数据行进行hash,用于匹配;
- 遍历probeSide chunk表可用于匹配的数据,并调用 joinMatchedProbeSideRow2Chunk 获取匹配成功数据填入到 joinResult 中;
func (e *HashJoinExec) join2Chunk(workerID uint, probeSideChk *chunk.Chunk, hCtx *hashContext, joinResult *hashjoinWorkerResult,
selected []bool) (ok bool, _ *hashjoinWorkerResult) {
var err error
// 校验probeSide chunk查询到的数据是否可用来匹配
selected, err = expression.VectorizedFilter(e.ctx, e.outerFilter, chunk.NewIterator4Chunk(probeSideChk), selected)
if err != nil {
joinResult.err = err
return false, joinResult
}
//probeSide表的hash,用于匹配
hCtx.initHash(probeSideChk.NumRows())
for keyIdx, i := range hCtx.keyColIdx {
ignoreNull := len(e.isNullEQ) > keyIdx && e.isNullEQ[keyIdx]
err = codec.HashChunkSelected(e.rowContainer.sc, hCtx.hashVals, probeSideChk, hCtx.allTypes[i], i, hCtx.buf, hCtx.hasNull, selected, ignoreNull)
if err != nil {
joinResult.err = err
return false, joinResult
}
}
//遍历probeSide表查询到的行记录
for i := range selected {
...
if !selected[i] || hCtx.hasNull[i] { // process unmatched probe side rows
e.joiners[workerID].onMissMatch(false, probeSideChk.GetRow(i), joinResult.chk)
} else { // process matched probe side rows
// 获取行记录的 probeKey 和 probeRow
probeKey, probeRow := hCtx.hashVals[i].Sum64(), probeSideChk.GetRow(i)
// 进行数据匹配
ok, joinResult = e.joinMatchedProbeSideRow2Chunk(workerID, probeKey, probeRow, hCtx, joinResult)
if !ok {
return false, joinResult
}
}
// 如果joinResult的chunk已经满了,那么将数据放入到 joinResultCh,再重新获取 joinResult
if joinResult.chk.IsFull() {
e.joinResultCh <- joinResult
ok, joinResult = e.getNewJoinResult(workerID)
if !ok {
return false, joinResult
}
}
}
return true, joinResult
}
join2Chunk 会根据过滤条件判断 probeSide chunk 返回的数据是不是都能进行匹配,减少数据的匹配量;
如果可以匹配,那么会将 probeSide chunk 记录行的probeKey与probeRow传入到 joinMatchedProbeSideRow2Chunk 进行数据匹配。
func (e *HashJoinExec) joinMatchedProbeSideRow2Chunk(workerID uint, probeKey uint64, probeSideRow chunk.Row, hCtx *hashContext,
joinResult *hashjoinWorkerResult) (bool, *hashjoinWorkerResult) {
// 从buildSide表中匹配数据
buildSideRows, _, err := e.rowContainer.GetMatchedRowsAndPtrs(probeKey, probeSideRow, hCtx)
if err != nil {
joinResult.err = err
return false, joinResult
}
//表示没有匹配到数据,直接返回
if len(buildSideRows) == 0 {
e.joiners[workerID].onMissMatch(false, probeSideRow, joinResult.chk)
return true, joinResult
}
iter := chunk.NewIterator4Slice(buildSideRows)
hasMatch, hasNull, ok := false, false, false
// 将匹配上的数据add到 joinResult chunk 中
for iter.Begin(); iter.Current() != iter.End(); {
matched, isNull, err := e.joiners[workerID].tryToMatchInners(probeSideRow, iter, joinResult.chk)
if err != nil {
joinResult.err = err
return false, joinResult
}
if joinResult.chk.IsFull() {
e.joinResultCh <- joinResult
ok, joinResult = e.getNewJoinResult(workerID)
if !ok {
return false, joinResult
}
}
}
...
return true, joinResult
}
joinMatchedProbeSideRow2Chunk 会从 rowContainer 去获取数据,获取不到数据直接返回,获取到数据会将数据存放到 joinResult chunk 中。
下面用一个流程图来解释一下整个hash匹配过程:
整体上Join Worker匹配逻辑是:
- 从 probeSide 表获取数据到 probeSideResource;
- 根据 probeSideResource 的数据查哈希表,将 probeSide 表和buildSide表进行匹配;
- 将匹配上的数据写入到joinResult chunk 中;
- 最后将joinResult的数据刷入到 joinResultCh 发送给 Main Thread;
总结
这篇文章基本上从构建hash join执行器开始到运行 HashJoinExec 执行器进行了一个全面的解析。
回到开头提出的问题:
-
哪张表会成为 buildSide 表或 probeSide 表?
这个是由优化器决定的,创建 Physical Plan 的时候会创建多个,然后会遍历创建的 Plan 获取它的代价最小的那个。
-
buildSide 表来构造的哈希表是包含了 buildSide 表的所有数据吗?数据量太大会不会有问题?
buildSide 表构造的 hash 表包含了所有的数据,但是TiDB这里 hash表和数据项是分离的;数据是存放到 rowContainer 的 records ,数据量太大会通过 recordsInDisk 落盘;hash表是存放到 rowContainer的hashTable中;
-
probeSide 表匹配 buildSide 表的时候是单线程匹配还是多线程匹配?如果是多线程匹配,那么如何分配匹配的数据呢?
匹配是多线程匹配的,默认concurrency是5;它们之间传递数据是通过 channel 来传递数据,各自在获取数据的时候会根据自己的线程id从 probeResultChs 数组中获取 channel 并订阅其中的数据;
Reference
https://pingcap.com/zh/blog/tidb-source-code-reading-9
https://github.com/xieyu/blog/blob/master/src/tidb/hash-join.md