____tz_zs
tf.random_normal
从正态分布中输出随机值。
.
- <span style="font-size:16px;">random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)</span>
.
- shape:一个一维整数张量或Python数组。代表张量的形状。
- mean:数据类型为dtype的张量值或Python值。是正态分布的均值。
- stddev:数据类型为dtype的张量值或Python值。是正态分布的标准差。
- dtype: 输出的数据类型。
- seed:一个Python整数。是随机种子。
- name: 操作的名称(可选)
官网api地址:https://www.tensorflow.org/versions/r1.3/api_docs/python/tf/random_normal
tf.random_uniform
从均匀分布中返回随机值。
.
- random_uniform(
- shape,# 生成的张量的形状
- minval=0,
- maxval=None,
- dtype=tf.float32,
- seed=None,
- name=None
- )
.
返回值的范围默认是0到1的左闭右开区间,即[0,1)。minval为指定最小边界,默认为1。maxval为指定的最大边界,如果是数据浮点型则默认为1,如果数据为整形则必须指定。
官网api地址:https://www.tensorflow.org/api_docs/python/tf/random_uniform
tf.truncated_normal
截断的正态分布函数。生成的值遵循一个正态分布,但不会大于平均值2个标准差。
.
- truncated_normal(
- shape,#一个一维整数张量或Python数组。代表张量的形状。
- mean=0.0,#数据类型为dtype的张量值或Python值。是正态分布的均值。
- stddev=1.0,#数据类型为dtype的张量值或Python值。是正态分布的标准差
- dtype=tf.float32,#输出的数据类型。
- seed=None,#一个Python整数。是随机种子。
- name=None#操作的名称(可选)
- )
.
官网api地址:https://www.tensorflow.org/api_docs/python/tf/truncated_normal
tf.random_shuffle
沿着要被洗牌的张量的第一个维度,随机打乱。
.
- random_shuffle(
- value,# 要被洗牌的张量
- seed=None,
- name=None
- )
即下面这种效果:
.
- [[1, 2], [[5, 6],
- [3, 4], ==> [1, 2],
- [5, 6]] [3, 4]]
.
官网api地址: https://www.tensorflow.org/api_docs/python/tf/random_shuffle
附录1:生成随机数的操作的源码random_ops.py
.
- # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Operations for generating random numbers."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- from tensorflow.python.framework import dtypes
- from tensorflow.python.framework import ops
- from tensorflow.python.framework import random_seed
- from tensorflow.python.ops import array_ops
- from tensorflow.python.ops import control_flow_ops
- from tensorflow.python.ops import gen_random_ops
- from tensorflow.python.ops import math_ops
- # go/tf-wildcard-import
- # pylint: disable=wildcard-import
- from tensorflow.python.ops.gen_random_ops import *
- # pylint: enable=wildcard-import
- def _ShapeTensor(shape):
- """Convert to an int32 or int64 tensor, defaulting to int32 if empty."""
- if isinstance(shape, (tuple, list)) and not shape:
- dtype = dtypes.int32
- else:
- dtype = None
- return ops.convert_to_tensor(shape, dtype=dtype, name="shape")
- # pylint: disable=protected-access
- def random_normal(shape,
- mean=0.0,
- stddev=1.0,
- dtype=dtypes.float32,
- seed=None,
- name=None):
- """Outputs random values from a normal distribution.
- Args:
- shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
- mean: A 0-D Tensor or Python value of type `dtype`. The mean of the normal
- distribution.
- stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation
- of the normal distribution.
- dtype: The type of the output.
- seed: A Python integer. Used to create a random seed for the distribution.
- See
- @{tf.set_random_seed}
- for behavior.
- name: A name for the operation (optional).
- Returns:
- A tensor of the specified shape filled with random normal values.
- """
- with ops.name_scope(name, "random_normal", [shape, mean, stddev]) as name:
- shape_tensor = _ShapeTensor(shape)
- mean_tensor = ops.convert_to_tensor(mean, dtype=dtype, name="mean")
- stddev_tensor = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev")
- seed1, seed2 = random_seed.get_seed(seed)
- rnd = gen_random_ops._random_standard_normal(
- shape_tensor, dtype, seed=seed1, seed2=seed2)
- mul = rnd * stddev_tensor
- value = math_ops.add(mul, mean_tensor, name=name)
- return value
- ops.NotDifferentiable("RandomStandardNormal")
- def parameterized_truncated_normal(shape,
- means=0.0,
- stddevs=1.0,
- minvals=-2.0,
- maxvals=2.0,
- dtype=dtypes.float32,
- seed=None,
- name=None):
- """Outputs random values from a truncated normal distribution.
- The generated values follow a normal distribution with specified mean and
- standard deviation, except that values whose magnitude is more than 2 standard
- deviations from the mean are dropped and re-picked.
- Args:
- shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
- means: A 0-D Tensor or Python value of type `dtype`. The mean of the
- truncated normal distribution.
- stddevs: A 0-D Tensor or Python value of type `dtype`. The standard
- deviation of the truncated normal distribution.
- minvals: A 0-D Tensor or Python value of type `dtype`. The minimum value of
- the truncated normal distribution.
- maxvals: A 0-D Tensor or Python value of type `dtype`. The maximum value of
- the truncated normal distribution.
- dtype: The type of the output.
- seed: A Python integer. Used to create a random seed for the distribution.
- See
- @{tf.set_random_seed}
- for behavior.
- name: A name for the operation (optional).
- Returns:
- A tensor of the specified shape filled with random truncated normal values.
- """
- with ops.name_scope(name, "parameterized_truncated_normal",
- [shape, means, stddevs, minvals, maxvals]) as name:
- shape_tensor = _ShapeTensor(shape)
- means_tensor = ops.convert_to_tensor(means, dtype=dtype, name="means")
- stddevs_tensor = ops.convert_to_tensor(stddevs, dtype=dtype, name="stddevs")
- minvals_tensor = ops.convert_to_tensor(minvals, dtype=dtype, name="minvals")
- maxvals_tensor = ops.convert_to_tensor(maxvals, dtype=dtype, name="maxvals")
- seed1, seed2 = random_seed.get_seed(seed)
- rnd = gen_random_ops._parameterized_truncated_normal(
- shape_tensor,
- means_tensor,
- stddevs_tensor,
- minvals_tensor,
- maxvals_tensor,
- seed=seed1,
- seed2=seed2)
- return rnd
- def truncated_normal(shape,
- mean=0.0,
- stddev=1.0,
- dtype=dtypes.float32,
- seed=None,
- name=None):
- """Outputs random values from a truncated normal distribution.
- The generated values follow a normal distribution with specified mean and
- standard deviation, except that values whose magnitude is more than 2 standard
- deviations from the mean are dropped and re-picked.
- Args:
- shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
- mean: A 0-D Tensor or Python value of type `dtype`. The mean of the
- truncated normal distribution.
- stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation
- of the truncated normal distribution.
- dtype: The type of the output.
- seed: A Python integer. Used to create a random seed for the distribution.
- See
- @{tf.set_random_seed}
- for behavior.
- name: A name for the operation (optional).
- Returns:
- A tensor of the specified shape filled with random truncated normal values.
- """
- with ops.name_scope(name, "truncated_normal", [shape, mean, stddev]) as name:
- shape_tensor = _ShapeTensor(shape)
- mean_tensor = ops.convert_to_tensor(mean, dtype=dtype, name="mean")
- stddev_tensor = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev")
- seed1, seed2 = random_seed.get_seed(seed)
- rnd = gen_random_ops._truncated_normal(
- shape_tensor, dtype, seed=seed1, seed2=seed2)
- mul = rnd * stddev_tensor
- value = math_ops.add(mul, mean_tensor, name=name)
- return value
- ops.NotDifferentiable("ParameterizedTruncatedNormal")
- ops.NotDifferentiable("TruncatedNormal")
- def random_uniform(shape,
- minval=0,
- maxval=None,
- dtype=dtypes.float32,
- seed=None,
- name=None):
- """Outputs random values from a uniform distribution.
- The generated values follow a uniform distribution in the range
- `[minval, maxval)`. The lower bound `minval` is included in the range, while
- the upper bound `maxval` is excluded.
- For floats, the default range is `[0, 1)`. For ints, at least `maxval` must
- be specified explicitly.
- In the integer case, the random integers are slightly biased unless
- `maxval - minval` is an exact power of two. The bias is small for values of
- `maxval - minval` significantly smaller than the range of the output (either
- `2**32` or `2**64`).
- Args:
- shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
- minval: A 0-D Tensor or Python value of type `dtype`. The lower bound on the
- range of random values to generate. Defaults to 0.
- maxval: A 0-D Tensor or Python value of type `dtype`. The upper bound on
- the range of random values to generate. Defaults to 1 if `dtype` is
- floating point.
- dtype: The type of the output: `float32`, `float64`, `int32`, or `int64`.
- seed: A Python integer. Used to create a random seed for the distribution.
- See @{tf.set_random_seed}
- for behavior.
- name: A name for the operation (optional).
- Returns:
- A tensor of the specified shape filled with random uniform values.
- Raises:
- ValueError: If `dtype` is integral and `maxval` is not specified.
- """
- dtype = dtypes.as_dtype(dtype)
- if maxval is None:
- if dtype.is_integer:
- raise ValueError("Must specify maxval for integer dtype %r" % dtype)
- maxval = 1
- with ops.name_scope(name, "random_uniform", [shape, minval, maxval]) as name:
- shape = _ShapeTensor(shape)
- minval = ops.convert_to_tensor(minval, dtype=dtype, name="min")
- maxval = ops.convert_to_tensor(maxval, dtype=dtype, name="max")
- seed1, seed2 = random_seed.get_seed(seed)
- if dtype.is_integer:
- return gen_random_ops._random_uniform_int(
- shape, minval, maxval, seed=seed1, seed2=seed2, name=name)
- else:
- rnd = gen_random_ops._random_uniform(
- shape, dtype, seed=seed1, seed2=seed2)
- return math_ops.add(rnd * (maxval - minval), minval, name=name)
- ops.NotDifferentiable("RandomUniform")
- def random_shuffle(value, seed=None, name=None):
- """Randomly shuffles a tensor along its first dimension.
- The tensor is shuffled along dimension 0, such that each `value[j]` is mapped
- to one and only one `output[i]`. For example, a mapping that might occur for a
- 3x2 tensor is:
- ```python
- [[1, 2], [[5, 6],
- [3, 4], ==> [1, 2],
- [5, 6]] [3, 4]]
- ```
- Args:
- value: A Tensor to be shuffled.
- seed: A Python integer. Used to create a random seed for the distribution.
- See
- @{tf.set_random_seed}
- for behavior.
- name: A name for the operation (optional).
- Returns:
- A tensor of same shape and type as `value`, shuffled along its first
- dimension.
- """
- seed1, seed2 = random_seed.get_seed(seed)
- return gen_random_ops._random_shuffle(
- value, seed=seed1, seed2=seed2, name=name)
- def random_crop(value, size, seed=None, name=None):
- """Randomly crops a tensor to a given size.
- Slices a shape `size` portion out of `value` at a uniformly chosen offset.
- Requires `value.shape >= size`.
- If a dimension should not be cropped, pass the full size of that dimension.
- For example, RGB images can be cropped with
- `size = [crop_height, crop_width, 3]`.
- Args:
- value: Input tensor to crop.
- size: 1-D tensor with size the rank of `value`.
- seed: Python integer. Used to create a random seed. See
- @{tf.set_random_seed}
- for behavior.
- name: A name for this operation (optional).
- Returns:
- A cropped tensor of the same rank as `value` and shape `size`.
- """
- # TODO(shlens): Implement edge case to guarantee output size dimensions.
- # If size > value.shape, zero pad the result so that it always has shape
- # exactly size.
- with ops.name_scope(name, "random_crop", [value, size]) as name:
- value = ops.convert_to_tensor(value, name="value")
- size = ops.convert_to_tensor(size, dtype=dtypes.int32, name="size")
- shape = array_ops.shape(value)
- check = control_flow_ops.Assert(
- math_ops.reduce_all(shape >= size),
- ["Need value.shape >= size, got ", shape, size],
- summarize=1000)
- shape = control_flow_ops.with_dependencies([check], shape)
- limit = shape - size + 1
- offset = random_uniform(
- array_ops.shape(shape),
- dtype=size.dtype,
- maxval=size.dtype.max,
- seed=seed) % limit
- return array_ops.slice(value, offset, size, name=name)
- def multinomial(logits, num_samples, seed=None, name=None):
- """Draws samples from a multinomial distribution.
- Example:
- ```python
- # samples has shape [1, 5], where each value is either 0 or 1 with equal
- # probability.
- samples = tf.multinomial(tf.log([[10., 10.]]), 5)
- ```
- Args:
- logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice
- `[i, :]` represents the log-odds for all classes.
- num_samples: 0-D. Number of independent samples to draw for each row slice.
- seed: A Python integer. Used to create a random seed for the distribution.
- See
- @{tf.set_random_seed}
- for behavior.
- name: Optional name for the operation.
- Returns:
- The drawn samples of shape `[batch_size, num_samples]`.
- """
- with ops.name_scope(name, "multinomial", [logits]):
- logits = ops.convert_to_tensor(logits, name="logits")
- seed1, seed2 = random_seed.get_seed(seed)
- return gen_random_ops.multinomial(
- logits, num_samples, seed=seed1, seed2=seed2)
- ops.NotDifferentiable("Multinomial")
- def random_gamma(shape,
- alpha,
- beta=None,
- dtype=dtypes.float32,
- seed=None,
- name=None):
- """Draws `shape` samples from each of the given Gamma distribution(s).
- `alpha` is the shape parameter describing the distribution(s), and `beta` is
- the inverse scale parameter(s).
- Example:
- samples = tf.random_gamma([10], [0.5, 1.5])
- # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
- # the samples drawn from each distribution
- samples = tf.random_gamma([7, 5], [0.5, 1.5])
- # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
- # represents the 7x5 samples drawn from each of the two distributions
- samples = tf.random_gamma([30], [[1.],[3.],[5.]], beta=[[3., 4.]])
- # samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.
- Note: Because internal calculations are done using `float64` and casting has
- `floor` semantics, we must manually map zero outcomes to the smallest
- possible positive floating-point value, i.e., `np.finfo(dtype).tiny`. This
- means that `np.finfo(dtype).tiny` occurs more frequently than it otherwise
- should. This bias can only happen for small values of `alpha`, i.e.,
- `alpha << 1` or large values of `beta`, i.e., `beta >> 1`.
- Args:
- shape: A 1-D integer Tensor or Python array. The shape of the output samples
- to be drawn per alpha/beta-parameterized distribution.
- alpha: A Tensor or Python value or N-D array of type `dtype`. `alpha`
- provides the shape parameter(s) describing the gamma distribution(s) to
- sample. Must be broadcastable with `beta`.
- beta: A Tensor or Python value or N-D array of type `dtype`. Defaults to 1.
- `beta` provides the inverse scale parameter(s) of the gamma
- distribution(s) to sample. Must be broadcastable with `alpha`.
- dtype: The type of alpha, beta, and the output: `float16`, `float32`, or
- `float64`.
- seed: A Python integer. Used to create a random seed for the distributions.
- See
- @{tf.set_random_seed}
- for behavior.
- name: Optional name for the operation.
- Returns:
- samples: a `Tensor` of shape `tf.concat(shape, tf.shape(alpha + beta))`
- with values of type `dtype`.
- """
- with ops.name_scope(name, "random_gamma", [shape, alpha, beta]):
- shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
- alpha = ops.convert_to_tensor(alpha, name="alpha", dtype=dtype)
- beta = ops.convert_to_tensor(
- beta if beta is not None else 1, name="beta", dtype=dtype)
- alpha_broadcast = alpha + array_ops.zeros_like(beta)
- seed1, seed2 = random_seed.get_seed(seed)
- return math_ops.maximum(
- np.finfo(dtype.as_numpy_dtype).tiny,
- gen_random_ops._random_gamma(
- shape, alpha_broadcast, seed=seed1, seed2=seed2) / beta)
- ops.NotDifferentiable("RandomGamma")
- def random_poisson(lam, shape, dtype=dtypes.float32, seed=None, name=None):
- """Draws `shape` samples from each of the given Poisson distribution(s).
- `lam` is the rate parameter describing the distribution(s).
- Example:
- samples = tf.random_poisson([0.5, 1.5], [10])
- # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
- # the samples drawn from each distribution
- samples = tf.random_poisson([12.2, 3.3], [7, 5])
- # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
- # represents the 7x5 samples drawn from each of the two distributions
- Args:
- lam: A Tensor or Python value or N-D array of type `dtype`.
- `lam` provides the rate parameter(s) describing the poisson
- distribution(s) to sample.
- shape: A 1-D integer Tensor or Python array. The shape of the output samples
- to be drawn per "rate"-parameterized distribution.
- dtype: The type of `lam` and the output: `float16`, `float32`, or
- `float64`.
- seed: A Python integer. Used to create a random seed for the distributions.
- See
- @{tf.set_random_seed}
- for behavior.
- name: Optional name for the operation.
- Returns:
- samples: a `Tensor` of shape `tf.concat(shape, tf.shape(lam))` with
- values of type `dtype`.
- """
- with ops.name_scope(name, "random_poisson", [lam, shape]):
- lam = ops.convert_to_tensor(lam, name="lam", dtype=dtype)
- shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
- seed1, seed2 = random_seed.get_seed(seed)
- return gen_random_ops._random_poisson(shape, lam, seed=seed1, seed2=seed2)
.