股票问题系列通解(转载翻译)

https://leetcode-cn.com/circle/article/qiAgHn/

动态规划的大致思路是把一个复杂的问题转化成一个分阶段逐步递推的过程,从简单的初始状态一步一步递推,最终得到复杂问题的最优解。
动态规划解决问题的过程分为两步:
寻找状态转移方程:第N项与前若干项之间的关系
利用状态转移方程式自底向上求解问题。

对 T[i][k] 的定义需要分成两项:

T[i][k][0] 表示在第 i 天结束时,最多进行 k 次交易且在进行操作后持有 0 份股票的情况下可以获得的最大收益;
T[i][k][1] 表示在第 i 天结束时,最多进行 k 次交易且在进行操作后持有 1 份股票的情况下可以获得的最大收益。

基准情况:

T[-1][k][0] = 0, T[-1][k][1] = -Infinity
T[i][0][0] = 0, T[i][0][1] = -Infinity

状态转移方程:

T[i][k][0] = max(T[i - 1][k][0], T[i - 1][k][1] + prices[i])
T[i][k][1] = max(T[i - 1][k][1], T[i - 1][k - 1][0] - prices[i])
上一篇:js es6 flat()和flatMap()


下一篇:NOIP2020 游记