BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010

题意:

  有n条线段,长度分别为C[i]。

  你需要将所有的线段分成若干组,每组中线段的编号必须连续。

  然后每组中的线段接成一排,若线段的编号为i to j,则总长度X = j - i + ∑ C[i to j]。

  对于每一个组,花费为(X - L)^2,其中L为给定常量。

  问你最小总花费。

题解:

  表示状态:

    dp[i]表示已经将1 to i的线段分好组了,此时的最小总花费。

  找出答案:

    ans = dp[n]

  如何转移:

    设s[i] = ∑ C[1 to i], L = L + 1.

    dp[i] = min dp[j] + (s[i]-s[j]- L)^2  (0 <= j < i)

  边界条件:

    dp[0] = 0

  斜率优化:

    设j < k,且k的决策更优。

    则:dp[j] + (s[i]-s[j]- L)^2 > dp[k] + (s[i]-s[k]- L)^2

    整理得:(dp[k]+(s[k]+L)^2-dp[j]+(s[j]+L)^2) / (2*(s[k]-s[j])) < s[i]

    所以slope(i,j) = (dp[i]+(s[i]+L)^2-dp[j]+(s[j]+L)^2) / (2*(s[i]-s[j]))

    由于s[i]递增,所以单调队列维护下凸壳即可。

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 50005 using namespace std; int n,L;
int q[MAX_N];
long long s[MAX_N];
long long dp[MAX_N]; inline double slope(int i,int j)
{
return (dp[i]+(s[i]+L)*(s[i]+L)-dp[j]-(s[j]+L)*(s[j]+L))/(2.0*(s[i]-s[j]));
} int main()
{
cin>>n>>L; L++;
for(int i=;i<=n;i++) cin>>s[i];
for(int i=;i<=n;i++) s[i]+=s[i-];
for(int i=;i<=n;i++) s[i]+=i;
int l=,r=;
for(int i=;i<=n;i++)
{
while(l<r && slope(q[l],q[l+])<=s[i]) l++;
dp[i]=dp[q[l]]+(s[i]-s[q[l]]-L)*(s[i]-s[q[l]]-L);
while(l<r && slope(q[r],i)<slope(q[r-],q[r])) r--;
q[++r]=i;
}
cout<<dp[n]<<endl;
}
上一篇:CentOS安装chrome-浏览器


下一篇:Linux 在VMware中搭建CentOS6.5虚拟机