【spoj1433】KPSUM
来源
高逸涵《数位计数问题解法研究》
由于自己的数位计数类的问题实在太差了,所以把例2用markdown抄写并补充了一遍。
题意
将写在纸上,然后在相邻的数字间交替插入“+”和“-”,求最后的结果。例如当时,答案为:
分析
这是一道稍微复杂一点的数位计数问题。
我们首先探查数位确定,所有数字*的情况。
不妨设第一位从”+”开始。
若数位个数为偶数,以6位为例:
+0 | -0 | +0 | -0 | +0 | -0 |
+0 | -0 | +0 | -0 | +0 | -1 |
+0 | -0 | +0 | -0 | +0 | -2 |
… | … | … | … | … | … |
+9 | -9 | +9 | -9 | +9 | -9 |
发现:
①每个数位的符号相同,奇数符号的数位和偶数符号的数位个数相等。
②每个数位中每个数出现的次数相同。
所有数位的所有数的和为0。
若数位个数为奇数,以5位为例:
+0 | -0 | +0 | -0 | +0 |
-0 | +0 | -0 | +0 | -1 |
+0 | -0 | +0 | -0 | +2 |
-0 | +0 | -0 | +0 | -3 |
… | … | … | … | … |
+9 | -9 | +9 | -9 | +8 |
-9 | +9 | -9 | +9 | -9 |
相邻两行的和为-1。
之前我们这样认定:
不妨设第一位从”+”开始。
然而第一位不一定是+,这跟总位数有关。
注意:当前我们考虑的只是后面位对答案的贡献,前缀对答案的贡献并没有计算。
(1)当为偶数时
①当为偶数时,后面位数的贡献为0;
②当为奇数时,从第位开始贡献为0,所以我们只需要考虑第位的贡献。
第位的全是负号,贡献为:
(2)当为奇数时,相邻两行和为-1,总共有个数,所以有行,所以贡献为:
于是我们写出函数GetSum1。
LL GetSum1(int n,int k)
//n为*位个数,k为总位数
{
if (k%2==0)
{
if (n%2==0) return 0;
else
{
LL d=-45;
rep(i,1,n-1) d*=10;
return d;
}
}
else
{
LL d=-1;
rep(i,1,n) d*=10;
return d/2;
}
}
接下来,考虑带前缀的情况。总位数=前缀位+*位。
(1)当总位数为偶数时,前缀符号不变,乘上总行数即可。
(2)当总位数为奇数时,前缀两两相消。
依照以上分析编写GetSum2。
LL GetSum2(LL prefix,int n)
//prefix为前缀,n为*位个数
{
int d=0,t=1;
LL p=prefix,presum=0;
while (p>0)
{
presum+=(p%10)*t;
p/=10;
d++;
t=-t;
}
presum*=-t;
rep(i,1,n) presum*=10;
LL ret=GetSum1(n,n+d);
if ((d+n)%2==0) ret+=presum;
return ret;
}
沿用上例的思路,,再有了上述两个函数之后,我们继续将整个区间划分为若干段,分别利用上述函数求和,这里不再重复叙述。
小结
通过对问题从简单到复杂的层层递进分析,逐步将程序实现,使得一个原本比较复杂的问题轻松被解决。程序编写过程中思路明确,程序模块化合理,每个模块功能明确,并且单独可以通过check函数进行检验。使得出错的可能性大大降低。
虽然整体代码量有所增加,但由于思考的时间减少,代码编写时间甚至还会缩短。