- OpenBCI将脑地形图以动态的gif方式显示出来,首先运行topographic.py将png保存下来,然后运行gif_generate.py将png做成gif,这是第一种方法,刚刚思考了一下,应该还有第二种方法,直接在gif_generate.py中直接调用RealtimeExtract.create_epoch()然后生成png,一生成png就把它保存下来,这样就不会占文件空间了。
- 这里顺带提一句matplotlib.use('agg')如果没有这句代码,plt.savefig()是无法将脑地形图保存下来了,真是惨痛的经历!
Method One
gif_generate.py
from PIL import Image
import os
path='image/'
im=Image.open(path+"0.png")
images=[]
for root,dir,files in os.walk(path):
for file in files:
images.append(Image.open(os.path.join(root,file)))
im.save('gif.gif', save_all=True, append_images=images,loop=1,duration=1)
topograpich map.py
import time
import numpy as np
import matplotlib
import mne
import brainflow
from brainflow.data_filter import DataFilter, FilterTypes, AggOperations, WindowFunctions
from brainflow.board_shim import BoardShim, BrainFlowInputParams, BoardIds
import mne
matplotlib.use('agg')
import matplotlib.pyplot as plt
import pywt
from RealtimeExtract import create_epoch
def plot_sth():
for i in range(10):
epochs, eeg_data = create_epoch(Time=2, Duration=1., Overlap=0.0)
epochs.set_montage('standard_1020')
epochs.plot_psd_topomap()
plt.savefig('image/'+str(i))
plot_sth()
RealtimeExtract.py
import time
import numpy as np
import matplotlib
import mne
import brainflow
from brainflow.data_filter import DataFilter, FilterTypes, AggOperations, WindowFunctions
from brainflow.board_shim import BoardShim, BrainFlowInputParams, BoardIds
import mne
import matplotlib.pyplot as plt
import pywt
import pandas as pd
from scipy.fftpack import fft
'''
Update:2020/12/02
Extract the alpha delta and so on of each second
'''
def create_epoch(Time,Duration,Overlap):
BoardShim.enable_dev_board_logger()
# use synthetic board for demo
params = BrainFlowInputParams()
board = BoardShim(BoardIds.SYNTHETIC_BOARD.value, params)
board.prepare_session()
board.start_stream()
time.sleep(Time)
data = board.get_board_data()
board.stop_stream()
board.release_session()
#不知为啥这里是16通道,ValueError: len(data) (16) does not match len(info["ch_names"]) (8)
eeg_channels = [1, 2, 3, 4, 5, 6, 7, 8]
eeg_data = data[eeg_channels, :]
eeg_data = eeg_data / 1000000 # BrainFlow returns uV, convert to V for MNE
# Creating MNE objects from brainflow data arrays
# 记得对应的通道 TP9,TP10,AF7,AF8
print(BoardShim.get_eeg_names(BoardIds.SYNTHETIC_BOARD.value))
ch_types = ['eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg']
ch_names = ['T7', 'CP5', 'FC5', 'C3', 'C4', 'FC6', 'CP6', 'T8']
sfreq = BoardShim.get_sampling_rate(BoardIds.SYNTHETIC_BOARD.value)
print(sfreq)
info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
# 创建raw对象
#print('raw info:',eeg_data)
raw = mne.io.RawArray(eeg_data, info)
#raw.plot_psd(average=True)
plt.show()
'''
2021.1.30
保存为csv
'''
# raw = mne.io.read_raw_fif('raw.fif')
# 创建event对象,重叠时间overlap:2s
# 创建等距事件,默认id为1
events = mne.make_fixed_length_events(raw, duration=Duration, overlap=Overlap)
# 将事件和原始数据一起绘制
epochs = mne.Epochs(raw, events)
return epochs,eeg_data
# 小波包计算各个频段的能量分布
def WPEnergy(data, fs, wavelet, maxlevel):
# 小波包分解
wp = pywt.WaveletPacket(data=data, wavelet=wavelet, mode='symmetric', maxlevel=maxlevel)
db1 = pywt.Wavelet('db4')
print(len(pywt.wavedec(data, db1)))
# 频谱由低到高的对应关系,这里需要注意小波变换的频带排列默认并不是顺序排列,所以这里需要使用’freq‘排序。
freqTree = [node.path for node in wp.get_level(maxlevel, 'freq')]
# 计算maxlevel最小频段的带宽
freqBand = fs / (2 ** maxlevel)
# 定义能量数组
energy = []
# 循环遍历计算四个频段对应的能量
for iter in range(len(iter_freqs)):
iterEnergy = 0.0
for i in range(len(freqTree)):
# 第i个频段的最小频率
bandMin = i * freqBand
# 第i个频段的最大频率
bandMax = bandMin + freqBand
# 判断第i个频段是否在要分析的范围内
if (iter_freqs[iter]['fmin'] <= bandMin and iter_freqs[iter]['fmax'] >= bandMax):
# 计算对应频段的累加和
iterEnergy += pow(np.linalg.norm(wp[freqTree[i]].data, ord=None), 2)
# 保存四个频段对应的能量和
energy.append(iterEnergy)
# 绘制能量分布图
plt.plot([xLabel['name'] for xLabel in iter_freqs], energy, lw=0, marker='o',color='black')
plt.title('能量分布')
plt.show()
# 小波包变换-重构造分析不同频段的特征
def TimeFrequencyWP(data, fs, wavelet, maxlevel):
# 小波包变换这里的采样频率为250,如果maxlevel太小部分波段分析不到
wp = pywt.WaveletPacket(data=data, wavelet=wavelet, mode='symmetric', maxlevel=maxlevel)
# 频谱由低到高的对应关系,这里需要注意小波变换的频带排列默认并不是顺序排列,所以这里需要使用’freq‘排序。
freqTree = [node.path for node in wp.get_level(maxlevel, 'freq')]
# 计算maxlevel最小频段的带宽
freqBand = fs/(2**maxlevel)
#######################根据实际情况计算频谱对应关系,这里要注意系数的顺序
# 绘图显示
fig, axes = plt.subplots(len(iter_freqs)+1, 1, figsize=(10, 7), sharex=True, sharey=False)
# 绘制原始数据
axes[0].plot(data,color='black')
axes[0].set_title('原始数据')
color=['#33ffff','red','blue','green','black']
for iter in range(len(iter_freqs)):
# 构造空的小波包
new_wp = pywt.WaveletPacket(data=None, wavelet=wavelet, mode='symmetric', maxlevel=maxlevel)
for i in range(len(freqTree)):
print(len(freqTree))
# 第i个频段的最小频率
bandMin = i * freqBand
# 第i个频段的最大频率
bandMax = bandMin + freqBand
# 判断第i个频段是否在要分析的范围内
if (iter_freqs[iter]['fmin']<=bandMin and iter_freqs[iter]['fmax']>= bandMax):
# 给新构造的小波包参数赋值
new_wp[freqTree[i]] = wp[freqTree[i]].data
# 绘制对应频率的数据
axes[iter+1].plot(new_wp.reconstruct(update=True)[:2560],color=color[iter])
# 设置图名
axes[iter+1].set_title(iter_freqs[iter]['name'])
plt.show()
if __name__ == "__main__":
# plot_sth()
# create_raw_and_events()
print("-------------")
'''
CWT to find delta theta alpha and beta
'''
# 获取四个通道的数据并用小波变换的方式找
iter_freqs = [
{'name': 'Delta', 'fmin': 0, 'fmax': 4},
{'name': 'Theta', 'fmin': 4, 'fmax': 8},
{'name': 'Alpha', 'fmin': 8, 'fmax': 13},
{'name': 'Beta', 'fmin': 13, 'fmax': 35},
{'name': 'Gamma', 'fmin': 35, 'fmax': 100},
]
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
mne.set_log_level(False)
#epochsCom = mne.read_epochs(r'raw-epo.fif')
#while(True):
epochsCom, eeg_data = create_epoch(Time=10, Duration=1., Overlap=0.0)
# 三层list get_data()[0][i]其中i是通道口
print(epochsCom)
# print(epochsCom[0].get_data()[0])
# dataCom = epochsCom[0].get_data()[0][0]
# 这里获取的是第一个通道
dataCom = eeg_data[0]
#print(dataCom)
#WPEnergy(dataCom, fs=250, wavelet='db4', maxlevel=4)
TimeFrequencyWP(dataCom, fs=256, wavelet='db4', maxlevel=8)
'''
先面临以下问题:
① 256Hz获取用户1s的脑电信号并进行小波变化后,里面有256个样本,那如何得到1s中每个波段的值呢,每个样本取平均吗?
② 针对多通道的脑机接口,1s内的各个波值又该如何确定呢?
'''
Method Two
from PIL import Image,ImageFile
import os
from RealtimeExtract import create_epoch
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
global im
path='image/'
images=[]
'''
0305 have ready uploaded to cnblog
Method One
for root,dir,files in os.walk(path):
for file in files:
images.append(Image.open(os.path.join(root,file)))
'''
'''
Method Two
'''
new_path=path+'0.png'
for i in range(4):
epochs, eeg_data = create_epoch(Time=2, Duration=1., Overlap=0.0)
epochs.set_montage('standard_1020')
epochs.plot_psd_topomap()
plt.savefig(new_path)
if i==0:
global im
im = Image.open(new_path)
else:
images.append(Image.open(new_path))
im.save('1.gif', save_all=True, append_images=images,loop=1,duration=1)
但这个方法行不通,因为图片损坏了会报错OSError: unrecognized data stream contents when reading image file
加上以下两句代码
from PIL import Image,ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
加了代码之后虽然可以运行了,但还是有点小问题,不知道是不是图片产生和被替代的时间太快了,保存下来的gif中的图片还有些是黑的
所以建议大家还是按照第一种方法来吧