0509-斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你 n ,请计算 F(n) 。

示例 1:

输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:

输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:

输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

0 <= n <= 30

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/fibonacci-number

参考:

python

# 0509.斐波那契数列

class Solution:
    def fib(self, n: int) -> int:
        """
        递归, 时间O(2^n), 空间O(n)
        :param n:
        :return:
        """
        if n < 2:
            return n
        return self.fib(n-1) + self.fib(n-2)

class Solution1:
    def fib(self, n: int) -> int:
        """
        动态规划的简化版
        :param n:
        :return:
        """
        if n < 2:
            return n
        a,b,c = 0, 1, 0
        for i in range(1, n):
            c = a + b
            a, b = b, c
        return c

class Solution2:
    def fib(self, n: int) -> int:
        """
        动态规划
        - 1.确定dp数组
        - 2.递推
        - 3.dp初始化
        - 4.遍历顺序
        - 5.举例推到
        :param n:
        :return:
        """
        if n < 2: return n
        dp = [0] * 2
        dp[0] = 0
        dp[1] = 1
        for i in range(1, n):
            sum = dp[0] + dp[1]
            dp[0] = dp[1]
            dp[1] = sum
        return dp[1]


if __name__ == "__main__":
    test = Solution2()
    print(test.fib(4))

golang

package dynamicPrograming

// 递归
func fib(n int) int {
	if n < 2 {
		return n
	}
	return fib(n-1) + fib(n-2)
}

// 动态规划写法
func fib2(n int) int {
	if n < 2 {
		return n
	}
	var sum int
	dp := [2]int{}
	dp[0], dp[1] = 0, 1
	for i:=1;i<n;i++ {
		sum = dp[0] + dp[1]
		dp[0] = dp[1]
		dp[1] = sum
	}
	return dp[1]
}

// 动态规划的简化写法
func fib3(n int) int {
	if n < 2 {
		return n
	}
	var sum int
	var a, b int = 0, 1
	for i:=1;i<n;i++ {
		sum = a + b
		a = b
		b = sum
	}
	return sum
}

上一篇:LeetCode509题 (斐波那契数)


下一篇:利用递归函数求斐波那契值python版