分析可压缩湍流部分的继承关系
继承关系:
solver 中:
Info << "Creating turbulence model.n" << nl; autoPtr<compressible::turbulenceModel> turbulence ( compressible::turbulenceModel::New ( rho, U, phi, thermo ) );
|
其中 Foam::compressible::turbulenceModel
是 Foam::compressible::ThermalDiffusivity<CompressibleTurbulenceModel<fluidThermo>>
的 typedef
所以这里首先调用的是 ThermalDiffusivity
中的 New
:
template<class BasicTurbulenceModel> Foam::autoPtr<Foam::ThermalDiffusivity<BasicTurbulenceModel>> Foam::ThermalDiffusivity<BasicTurbulenceModel>::New ( const volScalarField& rho, const volVectorField& U, const surfaceScalarField& phi, const transportModel& transport, const word& propertiesName ) { return autoPtr<ThermalDiffusivity> ( static_cast<ThermalDiffusivity*>( BasicTurbulenceModel::New ( rho, U, phi, transport, propertiesName ).ptr()) ); }
|
CompressibleTurbulenceModel<class TransportModel>
是 BasicTurbulenceModel
的实例化,
因此接下来来到了 CompressibleTurbulenceModel
声明:
template<class TransportModel> class CompressibleTurbulenceModel : public TurbulenceModel < geometricOneField, volScalarField, compressibleTurbulenceModel, TransportModel >
|
New
函数:
template<class TransportModel> Foam::autoPtr<Foam::CompressibleTurbulenceModel<TransportModel>> Foam::CompressibleTurbulenceModel<TransportModel>::New ( const volScalarField& rho, const volVectorField& U, const surfaceScalarField& phi, const transportModel& transport, const word& propertiesName ) { return autoPtr<CompressibleTurbulenceModel> ( static_cast<CompressibleTurbulenceModel*>( TurbulenceModel < geometricOneField, volScalarField, compressibleTurbulenceModel, transportModel >::New ( geometricOneField(), rho, U, phi, phi, transport, propertiesName ).ptr()) ); }
|
接着来到 TurbulenceModel
这里用到了 RTS
New
函数:
static autoPtr<TurbulenceModel> New ( const alphaField& alpha, const rhoField& rho, const volVectorField& U, const surfaceScalarField& alphaRhoPhi, const surfaceScalarField& phi, const transportModel& transport, const word& propertiesName = turbulenceModel::propertiesName );
|
构造函数:
Foam::TurbulenceModel<Alpha, Rho, BasicTurbulenceModel, TransportModel>:: TurbulenceModel ( const alphaField& alpha, const rhoField& rho, const volVectorField& U, const surfaceScalarField& alphaRhoPhi, const surfaceScalarField& phi, const transportModel& transport, const word& propertiesName ) : BasicTurbulenceModel ( rho, U, alphaRhoPhi, phi, propertiesName ), alpha_(alpha), transport_(transport) {}
|
它的模板基类 BasicTurbulenceModel
的实例化是 compressibleTurbulenceModel
:
Foam::compressibleTurbulenceModel::compressibleTurbulenceModel ( const volScalarField& rho, const volVectorField& U, const surfaceScalarField& alphaRhoPhi, const surfaceScalarField& phi, const word& propertiesName ) : turbulenceModel ( U, alphaRhoPhi, phi, propertiesName ), rho_(rho) {}
|
最后终于来到了幕后大 Boss:turbulenceModel
面前:
Foam::turbulenceModel::turbulenceModel ( const volVectorField& U, const surfaceScalarField& alphaRhoPhi, const surfaceScalarField& phi, const word& propertiesName )
|
初始化列表中:alphaRhoPhi_(alphaRhoPhi)
另有函数:
inline const surfaceScalarField& alphaRhoPhi() const { return alphaRhoPhi_; }
|
combustionModel.H
中:
inline Foam::tmp<Foam::surfaceScalarField> Foam::combustionModel::phi() const { return turbulence().alphaRhoPhi(); }
|
就是说,solver
中 #include "compressibleCreatePhi.H"
创建的 phi
逐级传到了湍流模型中,我可以使用 Foam::combustionModel::phi()
来调用它!!!这是合理的!!!
原文:大专栏 OpenFOAM 可压缩湍流库深度解析