(1)共享单一绘图区域的坐标轴
''' 上一讲介绍了画布的划分,有时候想将多张图放在同一个绘图区域, 不想在每个绘图区域只绘制一幅图形,这时候借助共享坐标轴的方法实现在一个绘图区 绘制多幅图形的目的。 ''' import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl mpl.rcParams["font.sans-serif"]=["SimHei"] mpl.rcParams["axes.unicode_minus"]=False fig, ax1 = plt.subplots() t = np.arange(0.05, 10, 0.01) s1 = np.exp(t) ax1.plot(t, s1, c="b", ls="-") ax1.set_xlabel("x坐标轴") ax1.set_ylabel("以e为底指数函数", color="r") ax1.tick_params("y", color="b") #将y轴标签,主刻度线和刻度标签设置 ax2 = ax1.twinx() #实例ax2的主轴与实例ax1的x轴是共享的,实例ax2的刻度线和刻度标签在右侧轴脊处绘制 s2 = np.cos(t**2) ax2.plot(t, s2, c="r", ls=":") ax2.set_ylabel("余弦函数", color="r") ax2.tick_params("y", colors="r") plt.show()
(2)共享不同子区绘图区域的坐标轴
''' 共享不同子区绘图区域的坐标轴的方法是subplots(2, 2, sharey=True), sharey=True是一区,二区共享y轴,还有其他参数,row,col,all,none, 其中all和none分别等同True和False。 ''' import matplotlib.pyplot as plt import numpy as np x1 = np.linspace(0, 2*np.pi, 400) y1 = np.cos(x1) x2 = np.linspace(0.01, 10, 100) y2 = np.cos(x2) x3 = np.random.rand(100) y3 = np.linspace(0, 3, 100) x4 = np.arange(0, 6, 0.5) y4 = np.power(x4, 3) fig, ax = plt.subplots(2, 2) #分成4个子区 ax1 = ax[0, 0] ax1.plot(x1, y1) #ax[0, 0]访问第一个子区 ax2 = ax[0, 1] ax2.plot(x2, y2) ax3 = ax[1, 0] ax3.scatter(x3, y3) ax4 = ax[1, 1] ax4.plot(x4, y4) plt.show()
(3)将(2)中的plt.subplots(2, 2)改成plt.subplots(2, 2, sharex="all")-所有子区共享x轴
(4)参数sharex=“none”
与(2)相同
(5)参数sharex=“row”------->每一行x轴取值范围实现共享
(6)sharex="col"------------->每列共享x
(7)将共享坐标轴的子区之间的空隙去掉,似乎出了点问题,还是有空隙
import matplotlib.pyplot as plt import numpy as np x = np.linspace(0.0, 10.0, 200) y = np.cos(x)*np.sin(x) y2 = np.exp(-x)*np.sin(x) y3 = 3*np.sin(x) y4 = np.power(x, 0.5) fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, sharex="all") fig.subplots_adjust(hspace=0) ax1.plot(x, y, ls="-", lw=2) ax1.set_yticks(np.arange(-0.6, 0.7, 0.2)) ax1.set_ylim(-0.7, 0.7)
(8)共享个别子区绘图区域的坐标轴
import matplotlib.pyplot as plt import numpy as np x1 = np.linspace(0, 2*np.pi, 400) y1 = np.cos(x1**2) x2 = np.linspace(0.01, 10, 100) y2 = np.sin(x2) x3 = np.random.rand(100) y3 = np.linspace(0, 3, 100) x4 = np.arange(0, 6, 0.5) y4 = np.power(x4, 3) fig, ax = plt.subplots(2, 2) ax1 = plt.subplot(221) ax1.plot(x1, y1) ax2 = plt.subplot(222) ax2.plot(x2, y2) ax3 = plt.subplot(223) ax3.plot(x3, y3) ax4 = plt.subplot(224, sharex=ax1) #与子区1共享x轴 ax4.plot(x4, y4) plt.show()