Hadoop面试题目

Hadoop是什么

从HDFS、MR、Yarn进行讲解。

HDFS的读写流程

读流程:

Hadoop面试题目

 写流程:

Hadoop面试题目

MR任务中的Shuffle过程

  1. Map方法之后Reduce方法之前这段处理过程叫「Shuffle」

  2. Map方法之后,数据首先进入到分区方法,把数据标记好分区,然后把数据发送到环形缓冲区;环形缓冲区默认大小100m,环形缓冲区达到80%时,进行溢写;溢写前对数据进行排序,排序按照对key的索引进行字典顺序排序,排序的手段「快排」;溢写产生大量溢写文件,需要对溢写文件进行「归并排序」;对溢写的文件也可以进行Combiner操作,前提是汇总操作,求平均值不行。最后将文件按照分区存储到磁盘,等待Reduce端拉取。

  3. 每个Reduce拉取Map端对应分区的数据。拉取数据后先存储到内存中,内存不够了,再存储到磁盘。拉取完所有数据后,采用归并排序将内存和磁盘中的数据都进行排序。在进入Reduce方法前,可以对数据进行分组操作。

Hadoop优化的方案(包括:压缩、小文件、集群的优化)

  1. HDFS小文件影响:影响NameNode的寿命,因为文件元数据存储在NameNode的内存中;影响计算引擎的任务数量,比如每个小的文件都会生成一个Map任务。
  2. 数据输入小文件处理:对小文件进行归档(Har)、自定义Inputformat将小文件存储成SequenceFile文件;采用ConbinFileInputFormat来作为输入,解决输入端大量小文件场景;对于大量小文件Job,可以开启JVM重用。
  3. Map阶段:增大环形缓冲区大小。由100m扩大到200m;增大环形缓冲区溢写的比例。由80%扩大到90%;减少对溢写文件的merge次数。(10个文件,一次20个merge);不影响实际业务的前提下,采用Combiner提前合并,减少 I/O。
  4. Reduce阶段:合理设置Map和Reduce数:两个都不能设置太少,也不能设置太多。太少,会导致Task等待,延长处理时间;太多,会导致 Map、Reduce任务间竞争资源,造成处理超时等错误。设置Map、Reduce共存:调整 slowstart.completedmaps 参数,使Map运行到一定程度后,Reduce也开始运行,减少Reduce的等待时间。规避使用Reduce,因为Reduce在用于连接数据集的时候将会产生大量的网络消耗。增加每个Reduce去Map中拿数据的并行数。集群性能可以的前提下,增大Reduce端存储数据内存的大小。
  5. IO传输:采用数据压缩的方式,减少网络IO的的时间。使用SequenceFile二进制文件。
  6. 压缩:

Hadoop面试题目

介绍一下 Yarn 的 Job 提交流程

Hadoop面试题目

 Hadoop集群中需要启动哪些进程

  • NameNode:HDFS的守护进程,负责记录文件是如何分割成数据块,以及这些数据块分别被存储到哪些数据节点上,它的主要功能是对内存及IO进行集中管理。
  • Secondary NameNode:辅助后台程序,与NameNode进行通信,以便定期保存HDFS元数据的快照。
  • DataNode:负责把HDFS数据块读写到本地的文件系统。
  • JobTracker:负责分配task,并监控所有运行的task。
  • TaskTracker:负责执行具体的task,并与JobTracker进行交互。

请列出你所知道的hadoop调度器,并简要说明其工作方法

  • FIFO Scheduler:先进先出调度器:优先提交的,优先执行,后面提交的等待【生产环境不会使用】

  • Capacity Scheduler:容量调度器:允许看创建多个任务对列,多个任务对列可以同时执行。但是一个队列内部还是先进先出。【Hadoop2.7.2默认的调度器】

  • Fair Scheduler:公平调度器:第一个程序在启动时可以占用其他队列的资源(100%占用),当其他队列有任务提交时,占用资源的队列需要将资源还给该任务。还资源的时候,效率比较慢。【CDH版本的yarn调度器默认】

请简述hadoop怎样实现二级排序

Hadoop中,默认情况下是按照key进行排序,如果要按照value进行排序怎么办?
有两种方法进行二次排序,分别为:buffer and in memory sort和 value-to-key conversion。

buffer and in memory sort
主要思想是:在reduce()函数中,将某个key对应的所有value保存下来,然后进行排序。 这种方法最大的缺点是:可能会造成out of memory。

value-to-key conversion
主要思想是:将key和部分value拼接成一个组合key(实现WritableComparable接口或者调setSortComparatorClass函数),这样reduce获取的结果便是先按key排序,后按value排序的结果,需要注意的是,用户需要自己实现Paritioner,以便只按照key进行数据划分。Hadoop显式的支持二次排序,在Configuration类中有个setGroupingComparatorClass()方法,可用于设置排序group的key值。

简述hadoop实现Join的几种方法。

(1)、reduce side join
reduce side join是一种最简单的join方式,其主要思想如下:
在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0表示来自文件File1,tag=2表示来自文件File2。即:map阶段的主要任务是对不同文件中的数据打标签。
在reduce阶段,reduce函数获取key相同的来自File1和File2文件的value list, 然后对于同一个key,对File1和File2中的数据进行join(笛卡尔乘积)。即:reduce阶段进行实际的连接操作。

(2)、map side join
之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。
Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。
为了支持文件的复制,Hadoop提供了一个类DistributedCache,使用该类的方法如下:
(1)用户使用静态方法DistributedCache.addCacheFile()指定要复制的文件,它的参数是文件的URI(如果是HDFS上的文件,可以这样:hdfs://namenode:9000/home/XXX/file,其中9000是自己配置的NameNode端口号)。JobTracker在作业启动之前会获取这个URI列表,并将相应的文件拷贝到各个TaskTracker的本地磁盘上。(2)用户使用DistributedCache.getLocalCacheFiles()方法获取文件目录,并使用标准的文件读写API读取相应的文件。

(3)、SemiJoin
SemiJoin,也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO。
实现方法很简单:选取一个小表,假设是File1,将其参与join的key抽取出来,保存到文件File3中,File3文件一般很小,可以放到内存中。在map阶段,使用DistributedCache将File3复制到各个TaskTracker上,然后将File2中不在File3中的key对应的记录过滤掉,剩下的reduce阶段的工作与reduce side join相同。

(4)、reduce side join + BloomFilter
在某些情况下,SemiJoin抽取出来的小表的key集合在内存中仍然存放不下,这时候可以使用BloomFiler以节省空间。
BloomFilter最常见的作用是:判断某个元素是否在一个集合里面。它最重要的两个方法是:add() 和contains()。最大的特点是不会存在false negative,即:如果contains()返回false,则该元素一定不在集合中,但会存在一定的true negative,即:如果contains()返回true,则该元素可能在集合中。
因而可将小表中的key保存到BloomFilter中,在map阶段过滤大表,可能有一些不在小表中的记录没有过滤掉(但是在小表中的记录一定不会过滤掉),这没关系,只不过增加了少量的网络IO而已。

请简述MapReduce中combiner、partition的作用

(1)、combiner
有时一个map可能会产生大量的输出,combiner的作用是在map端对输出先做一次合并,以减少网络传输到reducer的数量。
注意:mapper的输出为combiner的输入,reducer的输入为combiner的输出。

(2)、partition
把map任务输出的中间结果按照key的范围划分成R份(R是预先定义的reduce任务的个数),划分时通常使用hash函数,如:hash(key) mod R
这样可以保证一段范围内的key,一定会由一个reduce任务来处理。

PS:总的来说,题目太多了,最重要的还是要理解Hadoop的原理和基础架构,以及如何优化。问题暂时就放这么多了……

Hadoop面试题目

 

 

上一篇:JavaScript(JS) array.reduce(callback[, initialValue])


下一篇:MapReduce工作流