A/BTime Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description
要求(A/B)%9973,但因为A非常大,我们仅仅给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。 Output
相应每组数据输出(A/B)%9973。
Sample Input
Sample Output
79226060 解决该题的关键是: 1、了解扩展欧几里德算法,能够运用其解出gcd(a,b)=ax1+by1中的x1、y1的值 2、由题可得下面内容: n=A%9973,则n=A-A/9973*9973。 又A/B=x。则A=Bx。 所以Bx-A/9973*9973=n。即Bx-9973y=n。 到这里我们能够发现:仅仅要求出x的值,就可以算出x%9973。也就是(A/B)%9973了。 顺利攻克了! 3、题目关键转到怎样求出x了。题目的输入是n和B,利用扩展欧几里德算法可求出gcd(B,9973)=Bx1+9973y1=1的x1。 等式两边同乘以n,得B(nx1)-9973(-ny1)=n。可知nx1就是Bx-9973y=n的解了。!。即x=nx1。 4、对于第三部得到的x可能是负数,由题这显然是不对的。 能够做这种转化:(x%9973+9973)%9973 (最后一点也不太懂,不懂转化后为啥任然正确。期待大神赐教) #include<stdio.h> 此题所实用long long型只是。仅仅能用int |