查找是指在一批记录中找出满足指定条件的某一记录的过程,例如在数组{ 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 }中查找数字15,实现代码很简单:
- int key = 15;
- int[] datas = new int[] { 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
- for(int i = 0; i < datas.length; i++) {
- if(datas[i] == key) {
- System.out.println("找到了, 共查找" + (i + 1) + "次");
- break;
- }
- }
但是查找效率并不稳定,如果查找8,只需要比较一次,查找15则需要比较15次。如果数组扩大到1亿个数,而查找的数字恰好排在最后,查找则变得非常低效。
更好的查找方式是使用二叉搜索树,首先用数组构建二叉树,如下图:
二叉树的相关基础知识可参考:Java与算法之(7) - 完全二叉树
注意上面这棵二叉树的特点,每个左子节点的值都比父节点小,每个右子节点的值都比父节点大。满足这个条件的二叉树称为二叉搜索树(Binary Search Tree),也叫二叉排序树(Binary Sorting Tree)。
根据这个特性,可以得出查找的规律。以查找15为例,从根节点8开始比较,因15>8,(如果存在)则一定在8的右子树内;与右子树12比较,因15>12,(如果存在)则一定在12的右子树内;与14比较。。。与15比较,找到目标。
如果查找5,则依次比较8、4、6、5。
在这棵树中,查找任何一个数字,最多需要比较4次(约log2(15))。介绍查找方法之前,先看如何构建这棵树。
1 插入节点
用数据描述这棵树,首选需要描述节点。用一个类来表示,每个节点包括本身的值及左右两个子节点的指针。
- private static class Node {
- Node leftChild;
- Node rightChild;
- int data;
- public Node(int data) {
- this.data = data;
- }
- }
树由节点组成,一个一个节点加进去,树叶逐渐变得枝繁叶茂。构建树的过程可以分解成不断重复的插入节点行为。
第一个加入的节点做为根节点,以后加入节点的操作和前面所述的查询过程一样,从根开始比较,如果小于则和左子节点比较,如果大于则和右子节点比较,不断重复这个过程直到到达叶子节点。比叶子节点小则做为叶子节点的左子节点,大则做为右子节点。
构建过程如下:
这个过程的逻辑是一直向下寻找,直到没有子节点为止。整个过程适合用递归的方式,主要代码如下:
- public void add(int key) {
- if(root == null) {
- root = new Node(key);
- return;
- }
- addNode(root, new Node(key));
- }
- private void addNode(Node parent, Node child) {
- if(child.data == parent.data) {
- return;
- }
- if(child.data < parent.data) {
- if(parent.leftChild != null) {
- addNode(parent.leftChild, child);
- } else {
- parent.leftChild = child;
- }
- } else {
- if(parent.rightChild != null) {
- addNode(parent.rightChild, child);
- } else {
- parent.rightChild = child;
- }
- }
- }
2 查找节点
查找一个节点和插入一个节点的流程很相似,但是结果相反。插入节点是一直向下寻找,找到则插入失败,找不到则做为叶子节点加入树中。查找节点是一直向下寻找,找到则成功返回,找不到则查找失败。
代码如下:
- public void search(int key) {
- this.steps = 0;
- Node node = searchNode(root, key);
- if(node == null) {
- System.out.println("共查找" + this.steps + "次, 未找到" + key);
- } else {
- System.out.println("共查找" + this.steps + "次, 搜索到" + key);
- }
- }
- private Node searchNode(Node from, int key) {
- this.steps++;
- if(from == null || key == from.data) {
- return from;
- } else if(key > from.data) {
- return searchNode(from.rightChild, key);
- } else {
- return searchNode(from.leftChild, key);
- }
- }
3 删除节点
在二叉搜索树中删除一个节点后,需要调整二叉树的结构,使其仍然保持二叉搜索树的特点。以被删除节点拥有子节点的情况,分三种情况考虑。见下图:
- 15节点左右子节点都没有,删除时直接把父节点14的右子节点设置为null即可
- 2节点没有右子节点,删除时需要把左子树连接回树中,即把4的左子节点指向1;6节点没有左子节点,删除时需要把右子树连接回书中,即把4的右子节点指向7
- 8节点同时拥有左右子节点,删除规则是先找到右子节点即12,然后递归12节点的左子节点,直到叶子节点,这张图中将找到9。设置8节点的值为9,并删除9节点。
按这个规则推导其他数字删除的步骤:
删除4,先找到6,6没有左子节点,查找结束,将4节点的值设置为6,按规则2删除6节点。
删除12,先找到14,递归左子节点找到13,设置12节点的值为13,删除13。
二叉搜索数完整代码如下:
- public class BinarySearchTree {
- private Node root;
- private int steps;
- /**
- * 插入节点
- * @param key
- */
- public void add(int key) {
- if(root == null) {
- root = new Node(key);
- return;
- }
- addNode(root, new Node(key));
- }
- private void addNode(Node parent, Node child) {
- if(child.data == parent.data) {
- return;
- }
- if(child.data < parent.data) {
- if(parent.leftChild != null) {
- addNode(parent.leftChild, child);
- } else {
- parent.leftChild = child;
- }
- } else {
- if(parent.rightChild != null) {
- addNode(parent.rightChild, child);
- } else {
- parent.rightChild = child;
- }
- }
- }
- /**
- * 查找节点
- * @param key
- */
- public void search(int key) {
- this.steps = 0;
- Node node = searchNode(root, key);
- if(node == null) {
- System.out.println("共查找" + this.steps + "次, 未找到" + key);
- } else {
- System.out.println("共查找" + this.steps + "次, 搜索到" + key);
- }
- }
- private Node searchNode(Node from, int key) {
- this.steps++;
- if(from == null || key == from.data) {
- return from;
- } else if(key > from.data) {
- return searchNode(from.rightChild, key);
- } else {
- return searchNode(from.leftChild, key);
- }
- }
- /**
- * 删除节点
- * @param key
- */
- public void delete(int key) {
- Node child = root;
- Node parent = child;
- boolean isLeftChild = true;
- while(child != null) {
- if(child.data == key) {
- deleteNode(parent, child, isLeftChild);
- child = null;
- } else if(key < child.data) {
- isLeftChild = true;
- parent = child;
- child = child.leftChild;
- } else {
- isLeftChild = false;
- parent = child;
- child = child.rightChild;
- }
- }
- }
- private void deleteNode(Node parent, Node child, boolean isLeftChild) {
- if(child.leftChild == null && child.rightChild == null) {
- if(isLeftChild) {
- parent.leftChild = null;
- } else {
- parent.rightChild = null;
- }
- } else if(child.leftChild == null) {
- if(isLeftChild) {
- parent.leftChild = child.rightChild;
- } else {
- parent.rightChild = child.rightChild;
- }
- } else if(child.rightChild == null) {
- if(isLeftChild) {
- parent.leftChild = child.leftChild;
- } else {
- parent.rightChild = child.leftChild;
- }
- } else {
- Node leaf = child.rightChild;
- parent = child;
- while(leaf.leftChild != null) {
- parent = leaf;
- leaf = leaf.leftChild;
- }
- child.data = leaf.data;
- if(parent != child)
- parent.leftChild = leaf.leftChild;
- else
- parent.rightChild = leaf.rightChild;
- }
- }
- /**
- * 中序遍历二叉搜索树, 结果是从小到大排列的
- * @param node
- */
- public void inOrder(Node node) {
- if(node == null) {
- return;
- }
- inOrder(node.leftChild);
- System.out.print(node.data + " ");
- inOrder(node.rightChild);
- }
- private static class Node {
- Node leftChild;
- Node rightChild;
- int data;
- public Node(int data) {
- this.data = data;
- }
- }
- public static void main(String[] args) {
- int[] datas = new int[] { 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
- BinarySearchTree bsTree = new BinarySearchTree();
- for(int i = 0; i < datas.length; i++) {
- bsTree.add(datas[i]);
- }
- System.out.print("中序遍历");
- bsTree.inOrder(bsTree.root);
- System.out.println();
- bsTree.search(8);
- bsTree.search(12);
- bsTree.search(15);
- System.out.println("删除节点8");
- bsTree.delete(8);
- System.out.print("中序遍历");
- bsTree.inOrder(bsTree.root);
- System.out.println();
- bsTree.search(8);
- }
- }
运行结果:
- 中序遍历1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- 共查找1次, 搜索到8
- 共查找2次, 搜索到12
- 共查找4次, 搜索到15
- 删除节点8
- 中序遍历1 2 3 4 5 6 7 9 10 11 12 13 14 15
- 共查找5次, 未找到8
本例中的二叉树结构是一种理想情况,如果对数组{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}使用上面的方法构建二叉搜索树,动手画一下就可以发现最终得到的仍然是一个链表,查找15需要比较15次。
这棵树根的左右严重失衡,左侧一个子节点都没有,而右侧的深度为15。为了保证查找的效率,需要对这棵树做优化,让整棵树保持一定的平衡,这就是下一篇的主角:平衡二叉搜索树。