题目描述
给定一个正整数N(N\le2^{31}-1)N(N≤231−1)
求ans_1=\sum_{i=1}^n\phi(i),ans_2=\sum_{i=1}^n \mu(i)ans1=∑i=1nϕ(i),ans2=∑i=1nμ(i)
输入输出格式
输入格式:
一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问
输出格式:
一共T行,每行两个用空格分隔的数ans1,ans2
输入输出样例
输入样例#1: 复制
6
1
2
8
13
30
2333
输出样例#1: 复制
1 1
2 0
22 -2
58 -3
278 -3
1655470 2
裸的杜教筛
$\sum_{i=1}^{n}\varphi(i) = \frac{n\times(n+1)}{2} - \sum_{d=2}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)$
$\sum_{i=1}^{n}\mu(i) = 1 - \sum_{d=2}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\mu(i)$
然后直接暴力递归计算即可
#include<cstdio>
#include<map>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
#define LL long long
using namespace std;
using namespace __gnu_pbds;
const int MAXN=;
int N,limit=,tot=,vis[MAXN],mu[MAXN],prime[MAXN];
LL phi[MAXN];
gp_hash_table<int,LL>Aphi,Amu;
void GetMuAndPhi()
{
vis[]=;phi[]=;mu[]=;
for(int i=;i<=limit;i++)
{
if(!vis[i]) prime[++tot]=i,phi[i]=i-,mu[i]=-;
for(int j=;j<=tot&&i*prime[j]<=limit;j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==){mu[i*prime[j]]=; phi[i*prime[j]]=phi[i]*prime[j]; break;}
else {mu[i*prime[j]]=-mu[i]; phi[i*prime[j]]=phi[i]*(prime[j]-); }
}
}
for(int i=;i<=limit;i++) mu[i]+=mu[i-],phi[i]+=phi[i-];
}
LL SolvePhi(LL n)
{
if(n<=limit) return phi[n];
if(Aphi[n]) return Aphi[n];
LL tmp=n*(n+)/;
for(int i=,nxt;i<=n;i=nxt+)
nxt=min(n,n/(n/i)),
tmp-=SolvePhi(n/i)*(LL)(nxt-i+);
return Aphi[n]=tmp;
}
LL SolveMu(LL n)
{
if(n<=limit) return mu[n];
if(Amu[n]) return Amu[n];
LL tmp=;
for(int i=,nxt;i<=n;i=nxt+)
nxt=min(n,n/(n/i)),
tmp-=SolveMu(n/i)*(LL)(nxt-i+);
return Amu[n]=tmp;
}
int main()
{
GetMuAndPhi();
int QWQ;
scanf("%d",&QWQ);
while(QWQ--)
{
scanf("%lld",&N);
printf("%lld %lld\n",SolvePhi(N),SolveMu(N));
}
return ;
}