Python与C/C++相互调用
参考:https://www.cnblogs.com/apexchu/p/5015961.html
本人做出了一些修改
一、问题
Python模块和C/C++的动态库间相互调用在实际的应用中会有所涉及,在此作一总结。
二、Python调用C/C++
1、Python调用C动态链接库
Python调用C库比较简单,不经过任何封装打包成so,再使用python的ctypes调用即可。
(1)C语言文件:pycall.c
/***gcc -o libpycall.so -shared -fPIC pycall.c*/
#include <stdio.h>
#include <stdlib.h>
int foo(int a, int b)
{
printf("you input %d and %d\n", a, b);
return a+b;
}
(2)gcc编译生成动态库libpycall.so:gcc -o libpycall.so -shared -fPIC pycall.c。使用g++编译生成C动态库的代码中的函数或者方法时,需要使用extern "C"来进行编译。
(3)Python调用动态库的文件:pycall.py
import ctypes
ll = ctypes.cdll.LoadLibrary
lib = ll("./libpycall.so")
lib.foo(1, 3)
print '***finish***'
(4)运行结果:
2、Python调用C++(类)动态链接库
需要extern "C"来辅助,也就是说还是只能调用C函数,不能直接调用方法,但是能解析C++方法。不是用extern "C",构建后的动态链接库没有这些函数的符号表。
(1)C++类文件:pycallclass.cpp
#include <iostream>
using namespace std;
class TestLib
{
public:
void display();
void display(int a);
};
void TestLib::display() {
cout<<"First display"<<endl;
}
void TestLib::display(int a) {
cout<<"Second display:"<<a<<endl;
}
extern "C" {
TestLib obj;
void display() {
obj.display();
}
void display_int() {
obj.display(2);
}
}
(2)g++编译生成动态库libpycall.so:g++ -o libpycallclass.so -shared -fPIC pycallclass.cpp。
(3)Python调用动态库的文件:pycallclass.py
import ctypes
so = ctypes.cdll.LoadLibrary
lib = so("./libpycallclass.so")
print 'display()'
lib.display()
print 'display(100)'
lib.display_int(100)
(4)运行结果:
3、Python调用C/C++可执行程序
(1)C/C++程序:main.cpp
#include <iostream>
using namespace std;
int test()
{
int a = 10, b = 5;
return a+b;
}
int main()
{
cout<<"---begin---"<<endl;
int num = test();
cout<<"num="<<num<<endl;
cout<<"---end---"<<endl;
}
(2)编译成二进制可执行文件:g++ -o testmain main.cpp。
(3)Python调用程序:main.py
import commands
import os
main = "./testmain"
if os.path.exists(main):
rc, out = commands.getstatusoutput(main)
print 'rc = %d, \nout = %s' % (rc, out)
print '*'*10
f = os.popen(main)
data = f.readlines()
f.close()
print data
print '*'*10
os.system(main)
(4)运行结果:
4、扩展Python(C++为Python编写扩展模块)
所有能被整合或导入到其它python脚本的代码,都可以被称为扩展。可以用Python来写扩展,也可以用C和C++之类的编译型的语言来写扩展。Python在设计之初就考虑到要让模块的导入机制足够抽象。抽象到让使用模块的代码无法了解到模块的具体实现细节。Python的可扩展性具有的优点:方便为语言增加新功能、具有可定制性、代码可以实现复用等。
为 Python 创建扩展需要三个主要的步骤:创建应用程序代码、利用样板来包装代码和编译与测试。
(1)创建应用程序代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int fac(int n)
{
if (n < 2) return(1); /* 0! == 1! == 1 */
return (n)*fac(n-1); /* n! == n*(n-1)! */
}
char *reverse(char *s)
{
register char t, /* tmp */
*p = s, /* fwd */
*q = (s + (strlen(s) - 1)); /* bwd */
while (p < q) /* if p < q */
{
t = *p; /* swap & move ptrs */
*p++ = *q;
*q-- = t;
}
return(s);
}
int main()
{
char s[BUFSIZ];
printf("4! == %d\n", fac(4));
printf("8! == %d\n", fac(8));
printf("12! == %d\n", fac(12));
strcpy(s, "abcdef");
printf("reversing 'abcdef', we get '%s'\n", \
reverse(s));
strcpy(s, "madam");
printf("reversing 'madam', we get '%s'\n", \
reverse(s));
return 0;
}
上述代码中有两个函数,一个是递归求阶乘的函数fac();另一个reverse()函数实现了一个简单的字符串反转算法,其主要目的是修改传入的字符串,使其内容完全反转,但不需要申请内存后反着复制的方法。
(2)用样板来包装代码
接口的代码被称为“样板”代码,它是应用程序代码与Python解释器之间进行交互所必不可少的一部分。样板主要分为4步:a、包含Python的头文件;b、为每个模块的每一个函数增加一个型如PyObject* Module_func()的包装函数;c、为每个模块增加一个型如PyMethodDef ModuleMethods[]的数组;d、增加模块初始化函数void initModule()。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int fac(int n)
{
if (n < 2) return(1);
return (n)*fac(n-1);
}
char *reverse(char *s)
{
register char t,
*p = s,
*q = (s + (strlen(s) - 1));
while (s && (p < q))
{
t = *p;
*p++ = *q;
*q-- = t;
}
return(s);
}
int test()
{
char s[BUFSIZ];
printf("4! == %d\n", fac(4));
printf("8! == %d\n", fac(8));
printf("12! == %d\n", fac(12));
strcpy(s, "abcdef");
printf("reversing 'abcdef', we get '%s'\n", \
reverse(s));
strcpy(s, "madam");
printf("reversing 'madam', we get '%s'\n", \
reverse(s));
return 0;
}
#include "Python.h"
static PyObject *
Extest_fac(PyObject *self, PyObject *args)
{
int num;
if (!PyArg_ParseTuple(args, "i", &num))
return NULL;
return (PyObject*)Py_BuildValue("i", fac(num));
}
static PyObject *
Extest_doppel(PyObject *self, PyObject *args)
{
char *orig_str;
char *dupe_str;
PyObject* retval;
if (!PyArg_ParseTuple(args, "s", &orig_str))
return NULL;
retval = (PyObject*)Py_BuildValue("ss", orig_str,
dupe_str=reverse(strdup(orig_str)));
free(dupe_str); #防止内存泄漏
return retval;
}
static PyObject *
Extest_test(PyObject *self, PyObject *args)
{
test();
return (PyObject*)Py_BuildValue("");
}
static PyMethodDef
ExtestMethods[] =
{
{ "fac", Extest_fac, METH_VARARGS },
{ "doppel", Extest_doppel, METH_VARARGS },
{ "test", Extest_test, METH_VARARGS },
{ NULL, NULL },
};
void initExtest()
{
Py_InitModule("Extest", ExtestMethods);
}
Python.h头文件在大多数类Unix系统中会在/usr/local/include/python2.x或/usr/include/python2.x目录中,系统一般都会知道文件安装的路径。
增加包装函数,所在模块名为Extest,那么创建一个包装函数叫Extest_fac(),在Python脚本中使用是先import Extest,然后调用Extest.fac(),当Extest.fac()被调用时,包装函数Extest_fac()会被调用,包装函数接受一个 Python的整数参数,把它转为C的整数,然后调用C的fac()函数,得到一个整型的返回值,最后把这个返回值转为Python的整型数做为整个函数调用的结果返回回去。其他两个包装函数Extest_doppel()和Extest_test()类似。
从Python到C的转换用PyArg_Parse*系列函数,int PyArg_ParseTuple():把Python传过来的参数转为C;int PyArg_ParseTupleAndKeywords()与PyArg_ParseTuple()作用相同,但是同时解析关键字参数;它们的用法跟C的sscanf函数很像,都接受一个字符串流,并根据一个指定的格式字符串进行解析,把结果放入到相应的指针所指的变量中去,它们的返回值为1表示解析成功,返回值为0表示失败。从C到Python的转换函数是PyObject* Py_BuildValue():把C的数据转为Python的一个对象或一组对象,然后返回之;Py_BuildValue的用法跟sprintf很像,把所有的参数按格式字符串所指定的格式转换成一个Python的对象。
C与Python之间数据转换的转换代码:
为每个模块增加一个型如PyMethodDef ModuleMethods[]的数组,以便于Python解释器能够导入并调用它们,每一个数组都包含了函数在Python中的名字,相应的包装函数的名字以及一个METH_VARARGS常量,METH_VARARGS表示参数以tuple形式传入。 若需要使用PyArg_ParseTupleAndKeywords()函数来分析命名参数的话,还需要让这个标志常量与METH_KEYWORDS常量进行逻辑与运算常量 。数组最后用两个NULL来表示函数信息列表的结束。
所有工作的最后一部分就是模块的初始化函数,调用Py_InitModule()函数,并把模块名和ModuleMethods[]数组的名字传递进去,以便于解释器能正确的调用模块中的函数。
(3)编译
为了让新Python的扩展能被创建,需要把它们与Python库放在一起编译,distutils包被用来编译、安装和分发这些模块、扩展和包。
创建一个setup.py 文件,编译最主要的工作由setup()函数来完成:
#!/usr/bin/env python
from distutils.core import setup, Extension
MOD = 'Extest'
setup(name=MOD, ext_modules=[Extension(MOD, sources=['Extest2.c'])])
Extension()第一个参数是(完整的)扩展的名字,如果模块是包的一部分的话,还要加上用'.'分隔的完整的包的名字。上述的扩展是独立的,所以名字只要写"Extest"就行;sources参数是所有源代码的文件列表,只有一个文件Extest2.c。setup需要两个参数:一个名字参数表示要编译哪个内容;另一个列表参数列出要编译的对象,上述要编译的是一个扩展,故把ext_modules参数的值设为扩展模块的列表。
运行setup.py build命令就可以开始编译我们的扩展了,提示部分信息:
creating build/lib.linux-x86_64-2.6
gcc -pthread -shared build/temp.linux-x86_64-2.6/Extest2.o -L/usr/lib64 -lpython2.6 -o build/lib.linux-x86_64-2.6/Extest.so
(4)导入和测试
你的扩展会被创建在运行setup.py脚本所在目录下的build/lib.*目录中,可以切换到那个目录中来测试模块,或者也可以用命令把它安装到Python中:python setup.py install,会提示相应信息。
测试模块:
(5)引用计数和线程安全
Python对象引用计数的宏:Py_INCREF(obj)增加对象obj的引用计数,Py_DECREF(obj)减少对象obj的引用计数。Py_INCREF()和Py_DECREF()两个函数也有一个先检查对象是否为空的版本,分别为Py_XINCREF()和Py_XDECREF()。
编译扩展的程序员必须要注意,代码有可能会被运行在一个多线程的Python环境中。这些线程使用了两个C宏Py_BEGIN_ALLOW_THREADS和Py_END_ALLOW_THREADS,通过将代码和线程隔离,保证了运行和非运行时的安全性,由这些宏包裹的代码将会允许其他线程的运行。
☞ 三、C/C++调用Python ✔
C++可以调用Python脚本,那么就可以写一些Python的脚本接口供C++调用了,至少可以把Python当成文本形式的动态链接库,
需要的时候还可以改一改,只要不改变接口。缺点是C++的程序一旦编译好了,再改就没那么方便了。
(1)Python脚本:mytest.py
python2.6
#test function
def add(a,b):
print "in python function add"
print "a = " + str(a)
print "b = " + str(b)
print "ret = " + str(a+b)
return
def foo(a):
print "in python function foo"
print "a = " + str(a)
print "ret = " + str(a * a)
return
class guestlist:
def __init__(self):
print "aaaa"
def p():
print "bbbbb"
def __getitem__(self, id):
return "ccccc"
def update():
guest = guestlist()
print guest['aa']
#update()
python39
def printme():
print ("Python 是一个非常棒的语言,不是吗?")
return;
def printpath(a,b):
print (a)
print (b)
return;
#printme()
#def show():
# print "in python function add"
# return
#
def add(a,b):
print ("in python function add")
print ("a = " + str(a))
print ("b = " + str(b))
print ("ret = " + str(a+b))
return a+b
#print(str(add(1,2)))
def foo(a):
print ("in python function foo")
print ("a = " + str(a))
print ("ret = " + str(a * a))
return a*a
#print(str(foo(2)))
class guestlist:
def __init__(self):
print ("aaaa")
def p():
print ("bbbbb")
def __getitem__(self, id):
return "ccccc"
def update():
guest = guestlist()
print (guest['aa'])
#update()
(2)C++代码:
python2.6
/**g++ -o callpy callpy.cpp -I/usr/include/python2.6 -L/usr/lib64/python2.6/config -lpython2.6**/
#include <Python.h>
int main(int argc, char** argv)
{
// 初始化Python
//在使用Python系统前,必须使用Py_Initialize对其
//进行初始化。它会载入Python的内建模块并添加系统路
//径到模块搜索路径中。这个函数没有返回值,检查系统
//是否初始化成功需要使用Py_IsInitialized。
Py_Initialize();
// 检查初始化是否成功
if ( !Py_IsInitialized() ) {
return -1;
}
// 添加当前路径
//把输入的字符串作为Python代码直接运行,返回0
//表示成功,-1表示有错。大多时候错误都是因为字符串
//中有语法错误。
PyRun_SimpleString("import sys");
PyRun_SimpleString("print '---import sys---'");
PyRun_SimpleString("sys.path.append('./')");
PyObject *pName,*pModule,*pDict,*pFunc,*pArgs;
// 载入名为pytest的脚本
pName = PyString_FromString("pytest");
pModule = PyImport_Import(pName);
if ( !pModule ) {
printf("can't find pytest.py");
getchar();
return -1;
}
pDict = PyModule_GetDict(pModule);
if ( !pDict ) {
return -1;
}
// 找出函数名为add的函数
printf("----------------------\n");
pFunc = PyDict_GetItemString(pDict, "add");
if ( !pFunc || !PyCallable_Check(pFunc) ) {
printf("can't find function [add]");
getchar();
return -1;
}
// 参数进栈
*pArgs;
pArgs = PyTuple_New(2);
// PyObject* Py_BuildValue(char *format, ...)
// 把C++的变量转换成一个Python对象。当需要从
// C++传递变量到Python时,就会使用这个函数。此函数
// 有点类似C的printf,但格式不同。常用的格式有
// s 表示字符串,
// i 表示整型变量,
// f 表示浮点数,
// O 表示一个Python对象。
PyTuple_SetItem(pArgs, 0, Py_BuildValue("l",3));
PyTuple_SetItem(pArgs, 1, Py_BuildValue("l",4));
// 调用Python函数
PyObject_CallObject(pFunc, pArgs);
//下面这段是查找函数foo 并执行foo
printf("----------------------\n");
pFunc = PyDict_GetItemString(pDict, "foo");
if ( !pFunc || !PyCallable_Check(pFunc) ) {
printf("can't find function [foo]");
getchar();
return -1;
}
pArgs = PyTuple_New(1);
PyTuple_SetItem(pArgs, 0, Py_BuildValue("l",2));
PyObject_CallObject(pFunc, pArgs);
printf("----------------------\n");
pFunc = PyDict_GetItemString(pDict, "update");
if ( !pFunc || !PyCallable_Check(pFunc) ) {
printf("can't find function [update]");
getchar();
return -1;
}
pArgs = PyTuple_New(0);
PyTuple_SetItem(pArgs, 0, Py_BuildValue(""));
PyObject_CallObject(pFunc, pArgs);
Py_DECREF(pName);
Py_DECREF(pArgs);
Py_DECREF(pModule);
// 关闭Python
Py_Finalize();
return 0;
}
python39
//python39
#include <Python.h>
#include <iostream>
int main(int argc, char** argv)
{
// 初始化Python
//在使用Python系统前,必须使用Py_Initialize对其
//进行初始化。它会载入Python的内建模块并添加系统路
//径到模块搜索路径中。这个函数没有返回值,检查系统
//是否初始化成功需要使用Py_IsInitialized。
Py_Initialize();
// 检查初始化是否成功
if (!Py_IsInitialized()) {
return -1;
}
// 添加当前路径
//把输入的字符串作为Python代码直接运行,返回0
//表示成功,-1表示有错。大多时候错误都是因为字符串
//中有语法错误。
PyRun_SimpleString("import sys");
PyRun_SimpleString("print ('---import sys---')");
PyRun_SimpleString("sys.path.append('./')");
PyRun_SimpleString("print (sys.path)");
PyRun_SimpleString("import os");
PyRun_SimpleString("print(os.listdir())");
PyObject *pName, *pModule, *pDict, *pFunc, *pArgs;
// 载入名为pytest的脚本
//pName = PyBytes_FromString("mytest");
//pModule = PyImport_Import(pName);
pModule = PyImport_ImportModule("mytest");//这里是要调用的文件名hello.py
if (!pModule) {
printf("can't find pytest.py");
getchar();
return -1;
}
pDict = PyModule_GetDict(pModule);
if (!pDict) {
return -1;
}
// 找出函数名为add的函数
printf("----------------------\n");
pFunc = PyDict_GetItemString(pDict, "add");
if (!pFunc || !PyCallable_Check(pFunc)) {
printf("can't find function [add]");
getchar();
return -1;
}
// 参数进栈
*pArgs;
pArgs = PyTuple_New(2);
// PyObject* Py_BuildValue(char *format, ...)
// 把C++的变量转换成一个Python对象。当需要从
// C++传递变量到Python时,就会使用这个函数。此函数
// 有点类似C的printf,但格式不同。常用的格式有
// s 表示字符串,
// i 表示整型变量,
// f 表示浮点数,
// O 表示一个Python对象。
PyTuple_SetItem(pArgs, 0, Py_BuildValue("l", 3));
PyTuple_SetItem(pArgs, 1, Py_BuildValue("l", 4));
// 调用Python函数
PyObject* pRet = PyObject_CallObject(pFunc, pArgs);
int res = 0;
PyArg_Parse(pRet, "i", &res);//转换返回类型
std::cout << "res:" << res << std::endl;//输出结果
//下面这段是查找函数foo 并执行foo
printf("----------------------\n");
pFunc = PyDict_GetItemString(pDict, "foo");
if (!pFunc || !PyCallable_Check(pFunc)) {
printf("can't find function [foo]");
getchar();
return -1;
}
pArgs = PyTuple_New(1);
PyTuple_SetItem(pArgs, 0, Py_BuildValue("l", 2));
pRet = PyObject_CallObject(pFunc, pArgs);
res = 0;
PyArg_Parse(pRet, "i", &res);//转换返回类型
std::cout << "res:" << res << std::endl;//输出结果
printf("----------------------\n");
pFunc = PyDict_GetItemString(pDict, "update");
if (!pFunc || !PyCallable_Check(pFunc)) {
printf("can't find function [update]");
getchar();
return -1;
}
//pArgs = PyTuple_New(0);
//PyTuple_SetItem(pArgs, 0, Py_BuildValue(""));
//PyObject_CallObject(pFunc, pArgs);
PyObject_CallNoArgs(pFunc);
//Py_DECREF(pName);
//Py_DECREF(pArgs);
//Py_DECREF(pModule);
// 关闭Python
Py_Finalize();
return 0;
}
(3)C++编译成二进制可执行文件:g++ -o callpy callpy.cpp -I/usr/include/python2.6 -L/usr/lib64/python2.6/config -lpython2.6,编译选项需要手动指定Python的include路径和链接接路径(Python版本号根据具体情况而定)。
(4)运行结果:
四、总结
(1)Python和C/C++的相互调用仅是测试代码,具体的项目开发还得参考Python的API文档。
(2)两者交互,C++可为Python编写扩展模块,Python也可为C++提供脚本接口,更加方便于实际应用。
(3)若有不足,请留言,在此先感谢!
☞ C++调用python ✔
参考:https://blog.csdn.net/qq_38275373/article/details/91367372
C++调用python脚本网络上面有许多教程,但是有不少坑在里面,这里笔者亲自测试过,把相关流程写在下面:
1、环境配置
1.1 安装python环境,获得外部依赖库
python下载地址:https://www.python.org
请注意选择合适的平台版本,如果调试的是64位的选择64位安装包,x86同理,注意下面勾选vs debug选项
安装完成之后,来到python的安装路径,将include和libs文件夹复制到vs项目路径下面
将你需要调用的python脚本也存放在该目录下面,如下图:
在vs 项目属性中设置参数如下:
输入–附加依赖库里面填写python37_d.lib,如果没有请参考python安装那步,或者将python37.lib复制改名也可以(ps:没有试过,百度说可以)
2、C++中代码的编写
首先引入Python.h头文件,这里如果需要官方详细内容参考可以查看python官方文档,这里我给出几个常用的调用方法源码
#include <iostream>
#include <Python.h>
#include<string>
using namespace std;
int main()
{
Py_Initialize();//使用python之前,要调用Py_Initialize();这个函数进行初始化
if (!Py_IsInitialized())
{
printf("初始化失败!");
return 0;
}
PyRun_SimpleString("import sys");
PyRun_SimpleString("sys.path.append('./')");//这一步很重要,修改Python路径
PyRun_SimpleString("import os");
PyRun_SimpleString("print(os.listdir())");
PyObject * pModule = NULL;//声明变量
PyObject * pFunc1 = NULL;// 声明变量
PyObject * pFunc2 = NULL;// 声明变量
PyObject * pFunc3 = NULL;// 声明变量
pModule = PyImport_ImportModule("mytest");//这里是要调用的文件名hello.py
if (pModule == NULL)
{
cout << "没找到" << endl;
}
//1
pFunc1 = PyObject_GetAttrString(pModule, "printme");//这里是要调用的函数名
PyObject_CallNoArgs(pFunc1);//调用无参数无返回值的python函数
int aaa = 0;
//2
pFunc2 = PyObject_GetAttrString(pModule, "printpath");//这里是要调用的函数名
string readpath = R"(C:\Users\admin\Desktop\TestData)";
string writepath = R"(C:\Users\admin\Desktop\TestData.zip)";
PyObject* args = Py_BuildValue("ss", readpath.c_str(), writepath.c_str());//给python函数参数赋值
PyObject_CallObject(pFunc2, args);//调用函数
//3
pFunc3 = PyObject_GetAttrString(pModule, "add");//这里是要调用的函数名
PyObject* args2 = Py_BuildValue("ii", 28, 103);//给python函数参数赋值
PyObject* pRet = PyObject_CallObject(pFunc3, args2);//调用函数
int res = 0;
PyArg_Parse(pRet, "i", &res);//转换返回类型
cout << "res:" << res << endl;//输出结果
Py_Finalize(); // 与初始化对应
system("pause");
return 0;
}
3、python文件 mytest.py
python版本python39
def printme():
print ("Python 是一个非常棒的语言,不是吗?")
return;
def printpath(a,b):
print (a)
print (b)
return;
#printme()
#def show():
# print "in python function add"
# return
#
def add(a,b):
print ("in python function add")
print ("a = " + str(a))
print ("b = " + str(b))
print ("ret = " + str(a+b))
return a+b
#print(str(add(1,2)))
def foo(a):
print ("in python function foo")
print ("a = " + str(a))
print ("ret = " + str(a * a))
return a*a
#print(str(foo(2)))
class guestlist:
def __init__(self):
print ("aaaa")
def p():
print ("bbbbb")
def __getitem__(self, id):
return "ccccc"
def update():
guest = guestlist()
print (guest['aa'])
#update()
☞ C/C++ 调用Python ✔
参考:https://zhuanlan.zhihu.com/p/146874652?utm_source=qq
由于平时需要使用python做一些任务脚本,脚本里面主要包含了任务流程所需要命令执行和返回序列,而这些命令最终是需要到c/c++编写的程序代码中执行的,所以需要在c/c++中调用和解析python脚本。下面具体介绍了调用流程
C/C++ 调用Python
目录
- 前言
- 官方文档
- 环境搭建
- 编译链接
- Demo
- 解释器
- 初始化
- GIL
- Object
- 一切皆对象
- 从Python代码中获取Object
- C/C++与Object转换
- 函数调用
- 引用计数
- 参考资料
前言
最近项目中遇到需要用C++调用python代码的情况,在网上搜索后发现中文资料比较少。因此借此机会一边学习一边整理成文档,方便后续查阅。
官方文档
教程:https://docs.python.org/2/extending/embedding.html API:https://docs.python.org/2/c-api/index.html
环境搭建
编译链接
使用python提供的C/C++接口,需要包含python安装目录下的头文件Python.h 编译、链接时需要指定头文件、python库的地址,不过不需要我们自己操心,python提供了一个脚本,可以自动推荐编译、链接参数: Bash python-config –cflags python-config –ldflags
Demo
动过运行一个简单的demo,可以验证链路是否打通。 C++
#include <Python.h>
int main(int argc, char *argv[]) {
Py_Initialize();
PyRun_SimpleString("print('hello world')\n");
Py_Finalize();
return 0;
}
// g++ main.cpp -I$PYTHON_PATH/include/python2.7 -lpython2.7
// 输出 hello world
解释器
初始化
在调用python API时,首先需要初始化全局解释器,并且在使用完后销毁。在我们的业务场景下,需要解释器常驻内存,因此Py_Initialize在系统初始化时调用,Py_Finalize在析构函数中调用。
C++
void Py_Initialize(void)
int Py_IsInitialized(void)
void Py_Finalize()
初始化Python后,可以通过int PyRun_SimpleString(const char *command)函数令解释器执行任意python代码。这种叫做高层接口。高层接口虽然方便,但很难与C/C++交换数据。所以对于复杂需求,应该使用低层接口。虽然需要多写很多C代码,但可以灵活的实现很多复杂功能。
从操作步骤上看,C++调用Python低层接口可以分为几个阶段
- 初始化Python解释器
- 从C++到Python转换数据
- 用转换后的数据做参数调用Python函数
- 把函数返回值转换为C++数据结构
GIL
在使用python解释器时,要注意GIL(全局解释锁)的工作原理以及对性能的影响。GIL保证在任意时刻只有一个线程在解释器中运行。在多线程环境中,python解释器工作原理如下: Plain Text
1. 设置GIL
2. 切换到一个线程去运行
3. 运行:
a. 指定数量的字节码指令,或者
b. 线程主动让出控制(可以调用time.sleep(0))
4. 把线程设置为睡眠状态
5. 解锁GIL
6. 再次重复以上所有步骤
对性能的影响: 假如有一段两个线程的python代码,运行在一个两核CPU上。由于GIL的存在,两个线程无法真正并行执行,CPU占用率总是低于50%。
GIL是一个历史遗留问题,导致CPython多线程不能利用多个CPU内核的计算能力。为了利用多核,通常使用多进程的方法,或是通过Python调用C代码,由C来实现多线程。
注意,当在C/C++创建的线程中调用Python时,GIL需要通过函数PyGILState_Ensure()和PyGILState_Release()手动获取、释放。 C++
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */
/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);
Object
###一切皆对象 在python中有一句话叫做“一切皆对象”,这句话可以结合源码更好的进行理解。在python里,一切变量、函数、类等,在解释器中执行时,都会在在堆中新建一个对象,并将名字绑定在对象上。 Python
i = 1 -----新建一个PyIntObject对象,然后绑定到i上
s = "abcde" -----新建一个PyStringObject对象,绑定到s上
def foo(): pass -----新建一个PyFunctionObject对象, 绑定到foo上
class C(object): pass -----新建一个类对象,绑定到C上
instance = C() -----新建一个实例对象,绑定到instance上
l = [1,2] -----新建一个PyListObject对象,绑定到l上
t = (1,2) -----新建一个PyTupleObject对象,绑定到t上
在Python/C API中,使用指向堆中对象的指针PyObject*对这些对象进行进行管理。因此,python中的大多数语句,都可以通过对PyObject指针调用各种函数来实现。
从Python代码中获取Object
如上一节所述,既然一切皆对象,那我们就可以在C/C++中获取到python代码中的对象。
C++
// Python内建函数import,导入一个Python模块。
PyObject* PyImport_ImportModule(char *name)
// Python语句o.attr_name,返回对象o中检索attr_name属性或方法。
PyObject* PyObject_GetAttrString(PyObject *o, char*attr_name)
C/C++与Object转换
可以通过调用Py_BuildValue,通过传递格式字符串和变长参数,将C/C++变量构造为变量或元组。 C
PyObject* Py_BuildValue(const char *format, ...)
// 更多参数查阅参考官方文档
// s 将C字符串转换为Python字符串对象。
// i 将C int转换为Python整数对象。
// d 将C double转换为Python浮点数。
此外也可以直接调用下面一系列函数,显式将C/C++变量转换为python变量。 C++
// 基本变量
PyObject* PyLong_FromLong(long v)
PyObject* PyBool_FromLong(long v)
PyObject* PyFloat_FromDouble(double v)
// python元组
PyObject* PyTuple_New(Py_ssize_t len)
int PyTuple_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
使用例 C++
// 通过set item的方式构造tuple
PyObject* args = PyTuple_New(3);
PyObject* arg1 = Py_BuildValue("i", 100); // 整数参数
PyObject* arg2 = Py_BuildValue("f", 3.14); // 浮点数参数
PyObject* arg3 = Py_BuildValue("s", "hello"); // 字符串参数
PyTuple_SetItem(args, 0, arg1);
PyTuple_SetItem(args, 1, arg2);
PyTuple_SetItem(args, 2, arg3);
// 通过buildvalue直接构造tuple
PyObject* args = Py_BuildValue("(ifs)", 100, 3.14, "hello");
PyObject* args = Py_BuildValue("()"); // 无参函数
PyObject也可以转换为C++变量 C++
// 使用一系列库函数转换基本变量
long PyLong_AsLong(PyObject *obj)
long PyInt_AsLong(PyObject *obj)
double PyFloat_AsDouble(PyObject *obj)
string PyString_AsString(PyObject *obj)
// 元组
Py_ssize_t PyTuple_Size(PyObject *p)
PyObject* PyTuple_GetItem(PyObject *p, Py_ssize_t pos)
函数调用
由于Python中一切皆对象,因此函数、方法等调用都可以通过PyObject_Call系列函数完成。 C++
// callable(*args, **kwargs)
PyObject* PyObject_Call(PyObject *callable, PyObject *args, PyObject *kwargs)
PyObject* PyObject_CallObject(PyObject *callable, PyObject *args)
// callable(arg1, arg2, ...)
PyObject* PyObject_CallFunction(PyObject *callable, const char *format, ...)
PyObject* PyObject_CallFunctionObjArgs(PyObject *callable, ..., NULL)
// obj.name(arg1, arg2, ...)
PyObject* PyObject_CallMethod(PyObject *obj, const char *name, const char *format, ...)
PyObject* PyObject_CallMethodObjArgs(PyObject *obj, PyObject *name, ..., NULL)
可以发现,函数参数通常有两种类型,一种是直接传递tuple、map两类PyObject,另一种是通过格式字符串与变长参数,直接将C/C++变量解析成参数。
还用一种结合两种参数的方法,通过PyArg_ParseTuple()、PyArg_ParseTupleAndKeywords()和PyArg_Parse()三个函数,可以用格式字符串将C/C++变量构造为Python元组、字典或变量,以便后续函数调用。
引用计数
内存管理
Python使用引用计数与垃圾回收来管理内存。对于每个对象,可以理解为有一个对象实体以及若干对该实体的引用(指向对象的指针)。引用计数通过记录对象被引用的次数来管理对象,增加对对象的引用会使引用计数加一,减少对对象的引用使引用计数减一,当一个对象引用计数为0时释放该对象占用的内存。由于引用计数无法处理循环引用的情况,还会有垃圾回收机制来处理循环引用的对象。可以认为Python解释器会周期的调用垃圾回收。 所有的python对象,PyObject都有对象类型和引用计数。对象类型确定它是什么样的对象 (如,整数、列表或用户定义的函数)。对于每个已知类型,都有一个宏来检查对象是否属于该类型。例如,如果指向的对象是 Python 列表, 则 PyList_Check (a) 为 true。
Python/C API 中的引用计数
API中使用两个宏Py_INCREF(x) 和 Py_DECREF(x)来处理引用计数的增加和减少。当计数达到零时,Py_DECREF() 会释放对象。如果是列表等复合对象类型,Py_DECREF还会递减对象中包含的其他对象的引用计数。如果忘记减少引用计数将会造成内存泄漏。 有一个概念叫做引用的所有权,拥有所有权代表该引用不使用时需要调用Py_DECREF。所有权可以被传递,获得所有权的新引用也需要在不使用时调用Py_DECREF。 此外还有一个概念叫做“借用(borrow)”的引用,类似C++中std::weak_ptr。借用的引用不能长期持有对象,没有所有权。对象原持有者释放对象后,借用引用再访问被释放的内存会有风险。借用的引用可以通过调用Py_INCREF()改为真正持有引用。 所有权传递常发生在函数调用:
- 作为返回值:当函数返回一个引用给调用方时,分为两种情况:调用方获得引用所有权或借用了引用而没有获得所有权。
- 以 PyObject_、PyNumber_、PySequence_ 或 PyMapping_ 开头的函数总是传递所有权,新增它们返回的对象的引用计数,调用方要在使用完后调用Py_DECREF ()。
- 而PyTuple_GetItem ()、PyList_GetItem ()、PyDict_GetItem () 和 PyDict_GetItemString () 都返回从元组、列表或字典中借用的引用。
- 作为参数:当引用作为参数传递给函数时,有两种情况:函数窃取引用或没有窃取。窃取引用代表调用方不需要再处理该引用。
- 很少有函数窃取引用,常用的是PyList_SetItem()和PyTuple_SetItem()。
- 而PyObject_SetItem()、PyDict_SetItem()不窃取引用。
用一个例子来说明所有权传递问题,分别用PyList_GetItem()、 PySequence_GetItem()实现对list中所有数字求和: C++
long
sum_list(PyObject *list)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
return total;
}
C++
long
sum_sequence(PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check(item)) {
value = PyLong_AsLong(item);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF(item); /* Discard reference ownership */
}
}
return total;
}
参考资料
- 嵌套python解释器
- 浅析 C++ 调用 Python 模块
- C/C++与python互相调用
- python 一切皆对象
- 深入理解 GIL:如何写出高性能及线程安全的 Python 代码
- Python高级特性:全局解释器锁GIL基本概念
- python引用计数和gc垃圾回收