POJ3070 Fibonacci

题意

Language:Fibonacci
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 20704 Accepted: 14232

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

POJ3070 Fibonacci.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

POJ3070 Fibonacci.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

POJ3070 Fibonacci.

Source

Stanford Local 2006

分析

照题意模拟即可。时间复杂度\(O(2^3 \log n)\)

代码

#include<iostream>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
    rg T data=0,w=1;
    rg char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-') w=-1;
        ch=getchar();
    }
    while(isdigit(ch))
        data=data*10+ch-'0',ch=getchar();
    return data*w;
}
template<class T>il T read(rg T&x){
    return x=read<T>();
}
typedef long long ll;

co int mod=10000;
int n;
void mul(int f[2],int a[2][2]){
    int c[2];
    memset(c,0,sizeof c);
    for(int j=0;j<2;++j)
        for(int k=0;k<2;++k)
            c[j]=(c[j]+(ll)f[k]*a[k][j])%mod;
    memcpy(f,c,sizeof c);
}
void mulself(int a[2][2]){
    int c[2][2];
    memset(c,0,sizeof c);
    for(int i=0;i<2;++i)
        for(int j=0;j<2;++j)
            for(int k=0;k<2;++k)
                c[i][j]=(c[i][j]+(ll)a[i][k]*a[k][j])%mod;
    memcpy(a,c,sizeof c);
}
int main(){
//  freopen(".in","r",stdin),freopen(".out","w",stdout);
    while(~read(n)){
        int f[2]={0,1};
        int a[2][2]={{0,1},{1,1}};
        for(;n;n>>=1){
            if(n&1) mul(f,a);
            mulself(a);
        }
        printf("%d\n",f[0]);
    }
    return 0;
}
上一篇:算法(七):斐波那契数列


下一篇:fibonacci动态规划版本 开了一个dp数组