洛谷P1495
ll exgcd(ll a, ll b, ll &x, ll &y) { if(!b) { x = 1, y = 0; return a; } int d = exgcd(b, a % b, y, x); y -= a / b * x; return d; } ll m[maxn], rest[maxn], n; //M存储商,rest存储余数 ll China() { ll M = m[1], X = rest[1], x, y; //假设此时X已经满足前i-1个等式, 即通解为 X + M * k for(int i = 2; i <= n; ++i) //求解一个t1满足: X + t1*M ≡ rest[i] (mod m[i]) { ll d = exgcd(M, m[i], x, y); //即 t1*M + t2*m[i] = rest[i] - X,首先判断有无解 if((rest[i] - X) % d) return -1; x = (rest[i] - X) / d * x % m[i]; //原先的x 为 t1*M+t2*m[i]=gcd(M, m[i]) = d的解 X += M * x; //更新特解X M *= m[i] / d; //更新最小公倍数M X %= M; } return (X + M) % M; //求得最小正整数解 }