java spark-streaming接收TCP/Kafka数据

本文将展示

1、如何使用spark-streaming接入TCP数据并进行过滤;

2、如何使用spark-streaming接入TCP数据并进行wordcount;

内容如下:

1、使用maven,先解决pom依赖

<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>

1、接收TCP数据并过滤,打印含有error的行

package com.xiaoju.dqa.realtime_streaming;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.Durations; //nc -lk 9999
public class SparkStreamingTCP {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("streaming word count");
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
JavaDStream<String> lines = jssc.socketTextStream("10.93.21.21", 9999);
JavaDStream<String> errorLines = lines.filter(new Function<String, Boolean>() {
@Override
public Boolean call(String s) throws Exception {
return s.contains("error");
}
});
errorLines.print();
jssc.start();
jssc.awaitTermination();
}
}

执行方法

$ spark-submit realtime-streaming-1.0-SNAPSHOT-jar-with-dependencies.jar
# 另起一个窗口
$ nc -lk 9999
# 输入数据

2、接收Kafka数据并进行计数(WordCount)

package com.xiaoju.dqa.realtime_streaming;

import java.util.*;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.api.java.*;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.apache.spark.streaming.Durations; import scala.Tuple2; // bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
public class SparkStreamingKafka {
public static void main(String[] args) throws InterruptedException {
SparkConf conf = new SparkConf().setMaster("yarn-client").setAppName("streaming word count");
//String topic = "offline_log_metrics";
String topic = "test";
int part = 1;
JavaSparkContext sc = new JavaSparkContext(conf);
sc.setLogLevel("WARN");
JavaStreamingContext jssc = new JavaStreamingContext(sc, Durations.seconds(10));
Map<String ,Integer> topicMap = new HashMap<String, Integer>();
String[] topics = topic.split(";");
for (int i=0; i<topics.length; i++) {
topicMap.put(topics[i], 1);
}
List<JavaPairReceiverInputDStream<String, String>> list = new ArrayList<JavaPairReceiverInputDStream<String, String>>();
for (int i = 0; i < part; i++) {
list.add(KafkaUtils.createStream(jssc,
"10.93.21.21:2181",
"bigdata_qa",
topicMap));
}
JavaPairDStream<String, String> wordCountLines = list.get(0);
for (int i = 1; i < list.size(); i++) {
wordCountLines = wordCountLines.union(list.get(i));
}
JavaPairDStream<String, Integer> counts = wordCountLines.flatMap(new FlatMapFunction<Tuple2<String, String>, String>(){
@Override
public Iterable<String> call(Tuple2<String, String> stringStringTuple2){
List<String> list2 = null;
try {
if ("".equals(stringStringTuple2._2) || stringStringTuple2._2 == null) {
System.out.println("_2 is null");
throw new Exception("_2 is null");
}
list2 = Arrays.asList(stringStringTuple2._2.split(" "));
} catch (Exception ex) {
ex.printStackTrace();
System.out.println(ex.getMessage());
}
return list2;
}
}).mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) throws Exception {
Tuple2<String, Integer> tuple2 = null;
try {
if (s==null || "".equals(s)) {
tuple2 = new Tuple2<String, Integer>(s, 0);
throw new Exception("s is null");
}
tuple2 = new Tuple2<String, Integer>(s, 1);
} catch (Exception ex) {
ex.printStackTrace();
}
return tuple2;
}
}).reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer x, Integer y) throws Exception {
return x + y;
}
});
counts.print(); jssc.start();
try {
jssc.awaitTermination();
} catch (Exception ex) {
ex.printStackTrace();
} finally {
jssc.close();
}
}
}

执行方法

 $ spark-submit --queue=root.XXX realtime-streaming-1.0-SNAPSHOT-jar-with-dependencies.jar
# 另开一个窗口,启动kafka生产者
$ bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
# 输入数据
上一篇:MongoDB -> kafka 高性能实时同步(sync 采集)mongodb数据到kafka解决方案


下一篇:JAVA导出数据到excel中大数据量的解决方法