P2596 [ZJOI2006]书架
我们用fhq treap来完成这一题
对于一个新插入的节点我们取权值为其索引值,其所记录的 v a l u e value value是其当前索引所在位置。
操作一:把索引为 v a l u e value value的点放到平衡树前面,分别别得到三颗子树 x , y , z x, y, z x,y,z(前段子树,索引为 v a l u e value value所代表的子树,后段子树),同时把 v a l [ y ] val[y] val[y]修改成全局最小,然后按照顺序 m e r g e ( y , x , z ) merge(y, x, z) merge(y,x,z)。
操作二:与操作一类似得到 x , y , z x, y, z x,y,z,然后把 v a l [ y ] val[y] val[y]改成全局最大,按照顺序 m e r g e ( x , z , y ) merge(x, z, y) merge(x,z,y)。
操作三: t = 0 t = 0 t=0不做操作, t = 1 t = 1 t=1得到四颗子树 x , y , z , w x, y, z, w x,y,z,w(前段子树, v a l u e value value所代表的子树, v a l u e value value的后继,后端子树),交换信息,然后按照顺序 m e r g e ( x , z , y , w ) merge(x, z, y, w) merge(x,z,y,w), t = − 1 t = -1 t=−1得到四颗子树 x , y , z , w x, y, z, w x,y,z,w(前段子树, v a l u e value value的前驱, v a l u e value value所代表的子树,后端子树),交换信息,然后按照顺序 m e r g e ( x , z , y , w ) merge(x, z, y, w) merge(x,z,y,w)。
操作四:按照值分裂成两棵树,然后输出第一颗树的大小即可。
操作五:直接查找第 k k k大即可。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
mt19937 rnd(233);
int minn, maxn;
struct Tree {
int ls[N], rs[N], val[N], sz[N], key[N], root, cnt;
void push_up(int rt) {
sz[rt] = sz[ls[rt]] + sz[rs[rt]] + 1;
}
int new_node(int value, int pos) {
val[value] = pos, sz[value] = 1, key[value] = rnd();
return value;
}
void split(int rt, int value, int &x, int &y) {
if (!rt) {
x = y = 0;
return ;
}
if (val[rt] <= value) {
x = rt;
split(rs[rt], value, rs[rt], y);
}
else {
y = rt;
split(ls[rt], value, x, ls[rt]);
}
push_up(rt);
}
int merge(int x, int y) {
if (!x || !y) {
return x | y;
}
if (key[x] < key[y]) {
rs[x] = merge(rs[x], y);
push_up(x);
return x;
}
else {
ls[y] = merge(x, ls[y]);
push_up(y);
return y;
}
}
int get_num(int rt, int rank) {
while (rt) {
if (sz[ls[rt]] + 1 == rank) {
break;
}
if (sz[ls[rt]] >= rank) {
rt = ls[rt];
}
else {
rank -= sz[ls[rt]] + 1;
rt = rs[rt];
}
}
return rt;
}
int get_num(int rank) {
return get_num(root, rank);
}
void insert(int value, int pos) {
int x, y;
split(root, pos, x, y);
root = merge(merge(x, new_node(value, pos)), y);
}
void update(int value, int op) {
int x, y, z;
split(root, val[value], x, z);
split(x, val[value] - 1, x, y);
if (op) {
val[value] = --minn;
root = merge(merge(y, x), z);
}
else {
val[value] = ++maxn;
root = merge(merge(x, z), y);
}
}
void reverse(int value, int op) {
if (!op) {
return ;
}
if (op == 1) {
int x, y, z, w;
split(root, val[value], x, z);
split(x, val[value] - 1, x, y);
int t = get_num(z, 1);
split(z, val[t], z, w);
swap(val[y], val[z]);
root = merge(merge(x, z), merge(y, w));
}
else {
int x, y, z, w;
split(root, val[value] - 1, x, z);
split(z, val[value], z, w);
int t = get_num(x, sz[x]);
split(x, val[t] - 1, x, y);
swap(val[y], val[z]);
root = merge(merge(x, z), merge(y, w));
}
}
int get_rank(int value) {
int x, y, ans;
split(root, val[value] - 1, x, y);
ans = sz[x];
root = merge(x, y);
return ans;
}
}tree;
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
minn = 1, maxn = n;
for (int i = 1, x; i <= n; i++) {
scanf("%d", &x);
tree.insert(x, i);
}
char op[10];
for (int i = 1, s, t; i <= m; i++) {
scanf("%s %d", op, &s);
if (op[0] == 'T') {
tree.update(s, 1);
}
else if (op[0] == 'B') {
tree.update(s, 0);
}
else if (op[0] == 'I') {
scanf("%d", &t);
tree.reverse(s, t);
}
else if (op[0] == 'A') {
printf("%d\n", tree.get_rank(s));
}
else {
printf("%d\n", tree.get_num(s));
}
}
return 0;
}