命令xgb.importance返回由f分数测量的特征重要性图.
这个f分数代表什么,如何计算?
输出:
Graph of feature importance
解决方法:
这是一个度量标准,简单地总结了每个要素被拆分的次数.它类似于R版本https://cran.r-project.org/web/packages/xgboost/xgboost.pdf中的频率度量
它是您可以获得的基本功能重要性指标.
即这个变量分裂了多少次?
此方法的代码显示它只是在所有树中添加给定特征的存在.
[here..https://github.com/dmlc/xgboost/blob/master/python-package/xgboost/core.py#L953][1]
def get_fscore(self, fmap=''):
"""Get feature importance of each feature.
Parameters
----------
fmap: str (optional)
The name of feature map file
"""
trees = self.get_dump(fmap) ## dump all the trees to text
fmap = {}
for tree in trees: ## loop through the trees
for line in tree.split('\n'): # text processing
arr = line.split('[')
if len(arr) == 1: # text processing
continue
fid = arr[1].split(']')[0] # text processing
fid = fid.split('<')[0] # split on the greater/less(find variable name)
if fid not in fmap: # if the feature id hasn't been seen yet
fmap[fid] = 1 # add it
else:
fmap[fid] += 1 # else increment it
return fmap # return the fmap, which has the counts of each time a variable was split on