PAT* 1007 Red-black Tree (35分)

欢迎大家访问我的PAT TOP解题目录~

https://blog.csdn.net/qq_45228537/article/details/103671868

题目链接:

1007 Red-black Tree (35分)

思路:

我们定义r[i][j] b[i][j]分别为以红色、黑色的点为根节点,black heightiinternel node数量为j的情况下,所能形成的树的种数。
易知b[1][1] = 1; r[0][1] = 1; b[1][2] = 2;,这是根节点具有null孩子结点的三种情况;
下面我们可以根据红黑树的性质得到具有非null孩子结点的根结点具有的递推公式:
红色结点必定有两个黑色结点的孩子:
r[i][j + 1] += b[i][k] * b[i][j - k];
而黑色结点可以有任意颜色结点的孩子:
b[i + 1][j + 1] += (r[i][k] + b[i][k]) * (r[i][j - k] + b[i][j - k])
由于是非null结点,这里的j + 1至少是3

代码:

#include<bits/stdc++.h>

using namespace std;
typedef long long ll;

const int maxn = 505;
const ll mod = 1000000007;
int n;
ll r[maxn][maxn], b[maxn][maxn];

int main() {
#ifdef MyTest
	freopen("Sakura.txt", "r", stdin);
#endif	
	scanf("%d", &n);
	b[1][1] = r[0][1] = 1;
	b[1][2] = 2;
	for(int i = 0; i <= 10; i++){
		for(int j = 2; j < n; j++){
			for(int k = 1; k < j; k++){
				r[i][j + 1] += b[i][k] * b[i][j - k];
				r[i][j + 1] %= mod;
				b[i + 1][j + 1] += (r[i][k] + b[i][k]) * (r[i][j - k] + b[i][j - k]) % mod;
				b[i + 1][j + 1] %= mod;
			}
		}
	}
	ll ans = 0;
	for(int i = 0; i <= n; i++) ans = (ans + b[i][n]) % mod;
	printf("%lld", ans);
	return 0;
}
PAT* 1007 Red-black Tree (35分) qq_45228537 发布了255 篇原创文章 · 获赞 7 · 访问量 5306 私信 关注
上一篇:随着交易量的激增,VRM以最小的市场影响着大额加密交易市场


下一篇:java8-从Lamda到方法引用和构造引用