我最近碰到了这个难题,终于能够解决一个hacky的答案(使用索引数组),并想分享它(下面的答案).我确信有些答案使用模板递归和使用boost的答案;如果您有兴趣,请分享其他方法来做到这一点.我认为将这些全部放在一个地方可能会让其他人受益,并且有助于学习一些很酷的C 11模板元编程技巧.
问题:
鉴于两个相等长度的元组:
auto tup1 = std::make_tuple(1, 'b', -10);
auto tup2 = std::make_tuple(2.5, 2, std::string("even strings?!"));
你如何创建一个将两个元组“压缩”成异构元组的函数?
std::tuple<
std::pair<int, double>,
std::pair<char, int>,
std::pair<int, std::string> > result =
tuple_zip( tup1, tup2 );
哪里
std::get<0>(result) == std::make_pair(1, 2.5);
std::get<1>(result) == std::make_pair('b', 2);
std::get<2>(result) == std::make_pair(-10, std::string("even strings?!"));
解决方法:
首先,快速浏览索引数组:
template<std::size_t ...S>
struct seq { };
// And now an example of how index arrays are used to print a tuple:
template <typename ...T, std::size_t ...S>
void print_helper(std::tuple<T...> tup, seq<S...> s) {
// this trick is exceptionally useful:
// ((std::cout << std::get<S>(tup) << " "), 0) executes the cout
// and returns 0.
// { 0... } expands (because the expression has an S in it),
// returning an array of length sizeof...(S) full of zeros.
// The array isn't used, but it's a great hack to do one operation
// for each std::size_t in S.
int garbage[] = { ((std::cout << std::get<S>(tup) << " "), 0)... };
std::cout << std::endl;
}
现在使用我们的print_helper函数:
int main() {
print_helper(std::make_tuple(10, 0.66, 'h'), seq<0,1,2>() );
return 0;
}
键入seq< 0,1,2>但是,可能会有点痛苦.因此我们可以使用模板递归来创建一个类来生成seqs,这样gens< 3> :: type与seq< 0,1,2>相同:
template<std::size_t N, std::size_t ...S>
struct gens : gens<N-1, N-1, S...> { };
template<std::size_t ...S>
struct gens<0, S...> {
typedef seq<S...> type;
};
int main() {
print_helper(std::make_tuple(10, 0.66, 'h'), gens<3>::type() );
return 0;
}
由于gens< N> ::类型中的N将始终是元组中元素的数量,因此您可以包装print_helper以使其更容易:
template <typename ...T>
void print(std::tuple<T...> tup) {
print_helper(tup, typename gens<sizeof...(T)>::type() );
}
int main() {
print(std::make_tuple(10, 0.66, 'h'));
return 0;
}
请注意,模板参数可以自动推导出来(输入所有这些将是一种痛苦不是吗?).
现在,tuple_zip函数:
和以前一样,从辅助函数开始:
template <template <typename ...> class Tup1,
template <typename ...> class Tup2,
typename ...A, typename ...B,
std::size_t ...S>
auto tuple_zip_helper(Tup1<A...> t1, Tup2<B...> t2, seq<S...> s) ->
decltype(std::make_tuple(std::make_pair(std::get<S>(t1),std::get<S>(t2))...)) {
return std::make_tuple( std::make_pair( std::get<S>(t1), std::get<S>(t2) )...);
}
代码有点棘手,特别是尾随返回类型(返回类型声明为auto,并在定义参数后提供 – >).这让我们可以避免甚至定义返回类型的问题,只需声明它返回函数体中使用的表达式(如果x和y是整数,则在编译时将delctype(x y)解析为int).
现在将其包装在提供适当的seq< 0,1 ... N>的函数中.使用gens< N> :: type:
template <template <typename ...> class Tup1,
template <typename ...> class Tup2,
typename ...A, typename ...B>
auto tuple_zip(Tup1<A...> t1, Tup2<B...> t2) ->
decltype(tuple_zip_helper(t1, t2, typename gens<sizeof...(A)>::type() )) {
static_assert(sizeof...(A) == sizeof...(B), "The tuple sizes must be the same");
return tuple_zip_helper( t1, t2, typename gens<sizeof...(A)>::type() );
}
现在您可以按照问题中的指定使用它:
int main() {
auto tup1 = std::make_tuple(1, 'b', -10);
auto tup2 = std::make_tuple(2.5, 2, std::string("even strings?!"));
std::tuple<
std::pair<int, double>,
std::pair<char, int>,
std::pair<int, std::string> > x = tuple_zip( tup1, tup2 );
// this is also equivalent:
// auto x = tuple_zip( tup1, tup2 );
return 0;
}
最后,如果你提供<<对于std :: pair的运算符,您可以使用我们上面定义的print函数来打印压缩结果:
template <typename A, typename B>
std::ostream & operator << (std::ostream & os, const std::pair<A, B> & pair) {
os << "pair("<< pair.first << "," << pair.second << ")";
return os;
}
int main() {
auto tup1 = std::make_tuple(1, 'b', -10);
auto tup2 = std::make_tuple(2.5, 2, std::string("even strings?!"));
auto x = tuple_zip( tup1, tup2 );
std::cout << "zipping: ";
print(tup1);
std::cout << "with : ";
print(tup2);
std::cout << "yields : ";
print(x);
return 0;
}
输出是:
zipping: 1 b 10
with : 2.5 2 even strings?!
yields : pair(1,2.5) pair(b,2) pair(10,even strings?!)
与std :: array类似,std :: tuple是在编译时定义的,因此它可以用于生成更可优化的代码(与std :: vector和std :: list等容器相比,在编译时可以获知更多信息).因此,尽管它有时会有一些工作,但有时您可以使用它来制作快速而聪明的代码.快乐的黑客!
编辑:
根据要求,允许使用不同大小的元组和使用空指针填充:
template <typename T, std::size_t N, std::size_t ...S>
auto array_to_tuple_helper(const std::array<T, N> & arr, seq<S...> s) -> decltype(std::make_tuple(arr[S]...)) {
return std::make_tuple(arr[S]...);
}
template <typename T, std::size_t N>
auto array_to_tuple(const std::array<T, N> & arr) -> decltype( array_to_tuple_helper(arr, typename gens<N>::type()) ) {
return array_to_tuple_helper(arr, typename gens<N>::type());
}
template <std::size_t N, template <typename ...> class Tup, typename ...A>
auto pad(Tup<A...> tup) -> decltype(tuple_cat(tup, array_to_tuple(std::array<std::nullptr_t, N>()) )) {
return tuple_cat(tup, array_to_tuple(std::array<std::nullptr_t, N>()) );
}
#define EXTENSION_TO_FIRST(first,second) ((first)>(second) ? (first)-(second) : 0)
template <template <typename ...> class Tup1, template <typename ...> class Tup2, typename ...A, typename ...B>
auto pad_first(Tup1<A...> t1, Tup2<B...> t2) -> decltype( pad<EXTENSION_TO_FIRST(sizeof...(B), sizeof...(A)), Tup1, A...>(t1) ) {
return pad<EXTENSION_TO_FIRST(sizeof...(B), sizeof...(A)), Tup1, A...>(t1);
}
template <template <typename ...> class Tup1, template <typename ...> class Tup2, typename ...A, typename ...B>
auto diff_size_tuple_zip(Tup1<A...> t1, Tup2<B...> t2) ->
decltype( tuple_zip( pad_first(t1, t2), pad_first(t2, t1) ) ) {
return tuple_zip( pad_first(t1, t2), pad_first(t2, t1) );
}
顺便说一下,你现在需要这个才能使用我们方便的打印功能:
std::ostream & operator << (std::ostream & os, std::nullptr_t) {
os << "null_ptr";
return os;
}