JUC

JUC

什么是JUC

JUC

lock锁

JUC
JUC
JUC
公平锁:十分公平,可以先来后到
非公平锁:十分不公平,可以插队(默认)
Synchronized和Lock区别

  1. Synchronized内置的java关键字,Lock是一个java类
  2. Synchronized无法判断获取锁的状态,Lock可以判断是否获取到了锁
  3. Synchronized会自动释放锁,lock必须要手动释放锁!如果不释放锁,死锁
  4. Synchronized线程1(获取锁,阻塞)、线程2(等待);Lock锁不一定会等待下去
  5. Synchronized可重入锁,不可以中断,非公平;Lock,可重入锁,可以判断锁,非公平(可自己设置)
  6. Synchronized适合锁少量的代码同步问题,Lock适合锁大量的同步代码

JUC

生产者和消费者问题

synchronized版

package pc;

/**
 * 线程之间的通信问题:生产者消费者问题 等待唤醒
 *线程交替执行 A B操作同一个变量 num=0
 * A:num+1
 * B:num-1
 */
public class A {
    public static void main(String[] args) {
        Data data=new Data();
        new Thread(()->{
            for (int i = 0; i < 10; i++) {
                try {
                    data.increment();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        },"A").start();
        new Thread(()->{
            for (int i = 0; i < 10; i++) {
                try {
                    data.decrement();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        },"B").start();
    }

}
//等待、业务、通知
class Data{//资源类
    private int number=0;
    //+1
    public synchronized void increment() throws InterruptedException {
        if(number!=0){
            //等待
            this.wait();
        }
        number++;
        System.out.println(Thread.currentThread().getName()+"=>"+number);
        //通知其他线程,+1完毕
        this.notifyAll();
    }


    //-1
    public synchronized void decrement() throws InterruptedException {
        if(number==0){
            //等待
            this.wait();
        }
        number--;
        System.out.println(Thread.currentThread().getName()+"=>"+number);
        //通知其他线程,-1完毕
        this.notifyAll();
    }

}

存在问题:A、B、C、D4个线程!虚假唤醒
JUC
if改为while判断

JUC版

JUC
JUC

package pc;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class B {
    public static void main(String[] args) {
        Data2 data=new Data2();
        new Thread(()->{
            for (int i = 0; i < 10; i++) {
                try {
                    data.increment();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        },"A").start();
        new Thread(()->{
            for (int i = 0; i < 10; i++) {
                try {
                    data.decrement();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        },"B").start();
        new Thread(()->{
            for (int i = 0; i < 10; i++) {
                try {
                    data.increment();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        },"C").start();
        new Thread(()->{
            for (int i = 0; i < 10; i++) {
                try {
                    data.decrement();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        },"D").start();
    }


}
//等待、业务、通知
class Data2{//资源类
    private int number=0;
    Lock lock=new ReentrantLock();
    Condition condition = lock.newCondition();
//condition.await();等待
//condition.signalAll();唤醒全部
    //+1
    public  void increment() throws InterruptedException {
        lock.lock();
        try {
            //业务代码
            while (number!=0){
                //等待
                condition.await();
            }
            number++;
            System.out.println(Thread.currentThread().getName()+"=>"+number);
            //通知其他线程,+1完毕
            condition.signalAll();
        }catch (Exception e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }

    }
    //-1
    public  void decrement() throws InterruptedException {
        lock.lock();
        try {
            //业务代码
            while (number==0){
                //等待
                condition.await();
            }
            number--;
            System.out.println(Thread.currentThread().getName()+"=>"+number);
            //通知其他线程,+1完毕
            condition.signalAll();
        }catch (Exception e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
    }

}

condition精准的通知唤醒线程

package pc;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class C {
    public static void main(String[] args) {
        Data3 data=new Data3();
        new Thread(()->{
            for (int i = 0; i < 10; i++) {
                data.printA();
            }
        },"A").start();
        new Thread(()->{ for (int i = 0; i < 10; i++) {
            data.printB();
        }},"B").start();
        new Thread(()->{ for (int i = 0; i < 10; i++) {
            data.printC();
        }},"C").start();
    }
}
class Data3{
    private Lock lock=new ReentrantLock();
    private Condition condition1=lock.newCondition();
    private Condition condition2=lock.newCondition();
    private Condition condition3=lock.newCondition();
    private int num=1;
    public void printA(){
        lock.lock();
        try {
            while (num!=1){
                condition1.await();
            }
            System.out.println(Thread.currentThread().getName()+"=>AAAAA");
            //唤醒B
            num=2;
            condition2.signal();
        }catch (Exception e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }

    }
    public void printB(){
        lock.lock();
        try {
            while (num!=2){
                condition2.await();
            }
            System.out.println(Thread.currentThread().getName()+"=>BBBBB");
            //唤醒C
            num=3;
            condition3.signal();
        }catch (Exception e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
    }
    public void printC(){
        lock.lock();
        try {
            while (num!=3){
                condition3.await();
            }
            System.out.println(Thread.currentThread().getName()+"=>CCCCC");
            num=1;
            //唤醒A
            condition1.signal();
        }catch (Exception e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
    }
}

8锁现象

1、标准情况下,打印两个线程 首先打印send,在打印call

package lock8;

import java.util.concurrent.TimeUnit;

/**
* 8锁,关于锁的8个问题
* 1、标准情况下,打印两个线程 首先打印send,在打印call
* 
*/
public class Test1 {
   public static void main(String[] args) {
       Phone phone=new Phone();
       new Thread(()->{phone.send();},"A").start();
       try {
           TimeUnit.SECONDS.sleep(1);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       new Thread(()->{phone.call();},"B").start();
   }
}
class Phone{
   public synchronized void send(){
       System.out.println("send");
   }
   public synchronized void call(){
       System.out.println("call");
   }
}

2.send方法延迟4秒,打印两个线程 首先打印send,在打印call
synchronized 锁的对象是方法的调用者
两个方法用的是同一个锁,谁先拿到谁先执行

package lock8;

import java.util.concurrent.TimeUnit;

/**
* 8锁,关于锁的8个问题
* 1、标准情况下,打印两个线程 首先打印send,在打印call
* 2.send延迟4秒
*/
public class Test1 {
   public static void main(String[] args) {
       Phone phone=new Phone();
       new Thread(()->{phone.send();},"A").start();
       try {
           TimeUnit.SECONDS.sleep(1);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       new Thread(()->{phone.call();},"B").start();
   }
}
class Phone{
   // synchronized 锁的对象是方法的调用者
   //两个方法用的是同一个锁,谁先拿到谁先执行
   public synchronized void send(){
       try {
           TimeUnit.SECONDS.sleep(4);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       System.out.println("send");
   }
   public synchronized void call(){
       System.out.println("call");
   }
}

3.增加一个普通方法hello,先打印hello,在打印send

package lock8;

import java.util.concurrent.TimeUnit;

/**
* 增加一个普通方法,先打印hello,再打印send
*/
public class Test2 {
   public static void main(String[] args) {
       Phone2 phone=new Phone2();
       new Thread(()->{phone.send();},"A").start();
       try {
           TimeUnit.SECONDS.sleep(1);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       new Thread(()->{phone.hello();},"B").start();
   }
}
class Phone2{
   // synchronized 锁的对象是方法的调用者
   public synchronized void send(){
       try {
           TimeUnit.SECONDS.sleep(4);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       System.out.println("send");
   }
   public synchronized void call(){
       System.out.println("call");
   }
   //没有锁,不是同步方法,不受锁的影响
   public void hello(){
       System.out.println("hello");
   }
}

4.两个对象,两个同步方法,先打印call,在打印send
两个对象,两个调用者,两把锁

package lock8;

import java.util.concurrent.TimeUnit;

/**
* 增加一个普通方法,先打印hello,再打印send
*/
public class Test2 {
   public static void main(String[] args) {
       //两个对象,两个调用者,两把锁
       Phone2 phone1=new Phone2();
       Phone2 phone2=new Phone2();

       new Thread(()->{phone1.send();},"A").start();
       try {
           TimeUnit.SECONDS.sleep(1);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       new Thread(()->{phone2.call();},"B").start();
   }
}
class Phone2{
   // synchronized 锁的对象是方法的调用者
   public synchronized void send(){
       try {
           TimeUnit.SECONDS.sleep(4);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       System.out.println("send");
   }
   public synchronized void call(){
       System.out.println("call");
   }
   //没有锁,不是同步方法,不受锁的影响
   public void hello(){
       System.out.println("hello");
   }
}

5.增加两个静态同步方法,只有一个对象,先打印send,在打印call
static 静态方法
类一加载就有了 锁的是Class

package lock8;

import java.util.concurrent.TimeUnit;

/**
* 增加两个静态同步方法,只有一个对象,先打印send
*/
public class Test3 {
   public static void main(String[] args) {
  
       Phone3 phone=new Phone3();

       new Thread(()->{phone.send();},"A").start();
       try {
           TimeUnit.SECONDS.sleep(1);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       new Thread(()->{phone.call();},"B").start();
   }
}
//Phone3唯一有个class对象
class Phone3{
   // synchronized 锁的对象是方法的调用者
   //static 静态方法
   //类一加载就有了 锁的是Class
   public static synchronized void send(){
       try {
           TimeUnit.SECONDS.sleep(4);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       System.out.println("send");
   }
   public static synchronized void call(){
       System.out.println("call");
   }

}

6.两个静态同步方法,两个对象,先打印send,在打印call

package lock8;

import java.util.concurrent.TimeUnit;

/**
*
*/
public class Test3 {
   public static void main(String[] args) {
       //两个对象的Class类模板只有一个,static,锁的是class
       Phone3 phone1=new Phone3();
       Phone3 phone2=new Phone3();

       new Thread(()->{phone1.send();},"A").start();
       try {
           TimeUnit.SECONDS.sleep(1);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       new Thread(()->{phone2.call();},"B").start();
   }
}
//Phone3唯一有个class对象
class Phone3{
   // synchronized 锁的对象是方法的调用者
   //static 静态方法
   //类一加载就有了 锁的是Class
   public static synchronized void send(){
       try {
           TimeUnit.SECONDS.sleep(4);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       System.out.println("send");
   }
   public static synchronized void call(){
       System.out.println("call");
   }

}

7.一个静态同步方法,一个同步方法,一个对象,先打印call,再打印send

package lock8;

import java.util.concurrent.TimeUnit;

public class Test4{
   public static void main(String[] args) {
       //两个对象的Class类模板只有一个,static,锁的是class
       Phone4 phone1=new Phone4();

       new Thread(()->{phone1.send();},"A").start();
       try {
           TimeUnit.SECONDS.sleep(1);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       new Thread(()->{phone1.call();},"B").start();
   }
}
//Phone3唯一有个class对象
class Phone4{

   //静态同步方法,锁的是class类模板
   public static synchronized void send(){
       try {
           TimeUnit.SECONDS.sleep(4);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       System.out.println("send");
   }
   //普通同步方法 锁的调用者
   public synchronized void call(){
       System.out.println("call");
   }

}

小结:new this 具体的一个对象,static Class唯一的一个模板

集合类不安全

list不安全

package unsafe;

import java.util.*;
import java.util.concurrent.CopyOnWriteArrayList;

// java.util.ConcurrentModificationException并发修改异常
public class Test {
   public static void main(String[] args) {
       //并发下ArrayList 不安全的
       /**
        * 解决方案
        * 1.List<String> list=new Vector<>();
        * 2. List<String> list=Collections.synchronizedList(new ArrayList<>());
        * 3.  List<String> list=new CopyOnWriteArrayList<>();
        */
      //CopyOnWrite 写入时复制 COW  计算机程序设计领域的一种优化策略
       //多个线程调用的时候,list,读取的时候,固定的,写入(覆盖)
       //在写入的时候避免覆盖,造成数据问题
       List<String> list=new CopyOnWriteArrayList<>();

       for (int i = 0; i < 10; i++) {
           new Thread(()->{
               list.add(UUID.randomUUID().toString().substring(0,5));
               System.out.println(list);
           },String.valueOf(i)).start();
       }
   }
}

set不安全

package unsafe;

import java.util.Collections;
import java.util.HashSet;
import java.util.Set;
import java.util.UUID;
import java.util.concurrent.CopyOnWriteArraySet;

/*java.util.ConcurrentModificationException
*1. Set<String> set= Collections.synchronizedSet(new HashSet<>());
*2.Set<String> set=new CopyOnWriteArraySet<>();
*/
public class SetTest {
   public static void main(String[] args) {
       //Set<String> set=new HashSet<>();
       //Set<String> set= Collections.synchronizedSet(new HashSet<>());
       Set<String> set=new CopyOnWriteArraySet<>();
       for (int i = 0; i < 30; i++) {
           new Thread(()->{
               set.add(UUID.randomUUID().toString().substring(0,5));
               System.out.println(set);
           },String.valueOf(i)).start();
       }
   }
}

map不安全
JUC

package unsafe;

import java.util.HashMap;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.ConcurrentHashMap;

//java.util.ConcurrentModificationException
public class MapTest {
    public static void main(String[] args) {
        //Map<String, String> map = new HashMap<>();
        Map<String, String> map = new ConcurrentHashMap<>();

        for (int i = 0; i < 30; i++) {
            new Thread(()->{
                map.put(Thread.currentThread().getName(), UUID.randomUUID().toString().substring(0,5));
                System.out.println(map);
            },String.valueOf(i)).start();
        }
    }
}

Callable

JUC

  1. 可以有返回值
  2. 可以抛出异常
  3. 方法不同,run()/call()
    JUCJUC
package callable;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;

public class CallableTest {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //new Thread(new Runnable()).start();
        //new Thread(new FutureTask<V>()).start();
        //new Thread(new FutureTask<V>(Callable)).start();
        new Thread().start();//怎么启动Callable
        NyThread thread=new NyThread();
        FutureTask futureTask = new FutureTask(thread);//适配类
        new Thread(futureTask,"A").start();
         new Thread(futureTask,"B").start();//结果会被缓存,效率高
        Integer o = (Integer) futureTask.get();//这个get()方法可能会产生阻塞,把他放在最后,或者使用异步通信来处理,获取Callable的返回结果
        System.out.println(o);


    }
}
class NyThread implements Callable<Integer> {
    @Override
    public Integer call(){
        System.out.println("call() ");
        return 1024;

    }
}

1.有缓存
2.结果可能需要等待,会阻塞!

常用的辅助类

1.CountDownLatch

package add;

import java.util.concurrent.CountDownLatch;

public class CountDownLatchDemo {
    public static void main(String[] args) throws InterruptedException {
        //总数是6,必须要执行任务的时候,再使用!
        CountDownLatch countDownLatch = new CountDownLatch(6);
        for (int i = 1; i <= 6; i++) {
            new Thread(()->{
                System.out.println(Thread.currentThread().getName()+"GO OUT");
                countDownLatch.countDown();//数量-1
            },String.valueOf(i)).start();
        }
        countDownLatch.await();//等待计数器归零,然后再向下执行

        System.out.println("Close Door");

    }
}

原理:
countDownLatch.countDown();//数量-1
countDownLatch.await();//等待计数器归零,然后再向下执行

每次有线程调用countDown()数量-1,假设计数器变为0,countDownLatch.await()就会被唤醒,继续执行

2.CyclicBarrier
JUC
加法计数器

package add;

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;

public class CyclicBarrierDemo {
    public static void main(String[] args) {
        CyclicBarrier cyclicBarrier = new CyclicBarrier(7,()->{
            System.out.println("AAAAAA");
        });
        for (int i = 1; i <=7; i++) {
            final int temp=i;
            new Thread(()->{
                System.out.println(Thread.currentThread().getName()+"=>"+temp);
                try {
                    cyclicBarrier.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }).start();
        }
    }
}

3.Semaphore
信号量
JUC

package add;

import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;

public class SemaphoreDemo {
    public static void main(String[] args) {
        //线程数量:停车位数量为3,限流!
        Semaphore semaphore = new Semaphore(3);
        //6辆车,3个停车位
        for (int i = 1; i <= 6; i++) {
            new Thread(()->{
                //acquire()得到
                try {
                    semaphore.acquire();
                    System.out.println(Thread.currentThread().getName()+"抢到车位");
                    TimeUnit.SECONDS.sleep(2);
                    System.out.println(Thread.currentThread().getName()+"离开车位");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }finally {
                    semaphore.release(); //release()释放
                }

            },String.valueOf(i)).start();

        }
    }
}

semaphore.acquire();获得,假设如果已经满了,等待,等待被释放为止
semaphore.release();释放,会将当前的信号量释放,然后唤醒等待的线程
作用:多个共享资源互斥的使用!并发限流,控制最大的线程数

读写锁 ReadWriteLock

JUC

package rw;

import jdk.nashorn.internal.ir.CallNode;

import javax.sound.midi.Track;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * 独占锁(写锁) 一次只能被一个线程占有
 * 共享锁(读锁)  多个线程可以同时占有
 * ReadWriteLock
 * 读-读 可以共存
 * 读-写  不能共存
 * 写-写  不能共存
 */
public class ReadWriteLockDemo {
    public static void main(String[] args) {
       // MyCache myCache = new MyCache();
        MyCacheLock myCache = new MyCacheLock();
        //写入
        for (int i = 1; i <= 5; i++) {
            final int temp=i;
            new Thread(()->{
            myCache.put(temp+"",temp+"");
            },String.valueOf(i)).start();
        }
        //读取
        for (int i = 1; i <= 5; i++) {
            final int temp=i;
            new Thread(()->{
                myCache.get(temp+"");
            },String.valueOf(i)).start();
        }

    }
}
//加锁
class MyCacheLock{
    private volatile Map<String,Object> map=new HashMap<>();
    //读写锁,更加细粒度的控制
    private ReadWriteLock readWriteLock=  new ReentrantReadWriteLock();
    //存,写入的时候,只希望同时只有一个线程写
    public void put(String key,Object value){
        readWriteLock.writeLock().lock();
        try {
            System.out.println(Thread.currentThread().getName()+"写入"+key);
            map.put(key,value);
            System.out.println(Thread.currentThread().getName()+"写入OK");
        } catch (Exception e) {
            e.printStackTrace();
        }finally {
            readWriteLock.writeLock().unlock();
        }

    }
    //取,读,所有人读
    public void get(String key){
        readWriteLock.readLock().lock();
        try {
            System.out.println(Thread.currentThread().getName()+"读取"+key);
            Object o = map.get(key);
            System.out.println(Thread.currentThread().getName()+"读取OK");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            readWriteLock.readLock().unlock();
        }

    }
}

/**
 * 自定义缓存
 */
class MyCache{
    private volatile Map<String,Object> map=new HashMap<>();
    //存,写
    public void put(String key,Object value){
        System.out.println(Thread.currentThread().getName()+"写入"+key);
        map.put(key,value);
        System.out.println(Thread.currentThread().getName()+"写入OK");
    }
    //取,读
    public void get(String key){
        System.out.println(Thread.currentThread().getName()+"读取"+key);
        Object o = map.get(key);
        System.out.println(Thread.currentThread().getName()+"读取OK");
    }
}

阻塞队列

JUC
阻塞队列:
JUC
JUC

BlockingQueue不是新的东西
JUC

什么情况会使用多线程:多线程并发处理,线程池

四组API
JUC

package bq;

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.TimeUnit;

public class Test {
    public static void main(String[] args) throws InterruptedException {
        //test1();
        test3();

    }

    /**
     * 抛出异常
     */
    public static void test1(){
        //队列的大小
        ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
        System.out.println(arrayBlockingQueue.add("a"));
        System.out.println(arrayBlockingQueue.add("b"));
        System.out.println(arrayBlockingQueue.add("c"));

        //java.lang.IllegalStateException: Queue full 抛出异常
        //System.out.println(arrayBlockingQueue.add("d"));
        System.out.println(arrayBlockingQueue.element());//查看队首元素
        System.out.println("=====================");

        System.out.println(arrayBlockingQueue.remove());
        System.out.println(arrayBlockingQueue.remove());
        System.out.println(arrayBlockingQueue.remove());
        // java.util.NoSuchElementException 抛出异常
        //System.out.println(arrayBlockingQueue.remove());

    }

    /**
     * 不抛出异常
     */
    public static void test2(){
        //队列的大小
        ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
        System.out.println(arrayBlockingQueue.offer("a"));
        System.out.println(arrayBlockingQueue.offer("b"));
        System.out.println(arrayBlockingQueue.offer("c"));
        //System.out.println(arrayBlockingQueue.offer("d"));//false,不抛出异常
        System.out.println(arrayBlockingQueue.peek());//检测队首元素
        System.out.println("===================");
        System.out.println(arrayBlockingQueue.poll());
        System.out.println(arrayBlockingQueue.poll());
        System.out.println(arrayBlockingQueue.poll());
        //System.out.println(arrayBlockingQueue.poll());//null不抛出异常
    }

    /**
     * 等待、阻塞
     * @throws InterruptedException
     */
    public static void test3() throws InterruptedException {
        //队列的大小
        ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
        //一直阻塞
        arrayBlockingQueue.put("a");
        arrayBlockingQueue.put("b");
        arrayBlockingQueue.put("c");
        //arrayBlockingQueue.put("d");//队列没有位置,一直阻塞
        System.out.println(arrayBlockingQueue.take());
        System.out.println(arrayBlockingQueue.take());
        System.out.println(arrayBlockingQueue.take());
        //System.out.println(arrayBlockingQueue.take());没有这个元素,一直阻塞

    }

    /**
     * 等待,阻塞(等待超时)
     */
    public static void test4() throws InterruptedException {
//队列的大小
        ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
        arrayBlockingQueue.offer("a");
        arrayBlockingQueue.offer("b");
        arrayBlockingQueue.offer("c");
        arrayBlockingQueue.offer("d",2, TimeUnit.SECONDS);//等待超过两秒,退出
        System.out.println("==================");
        System.out.println(arrayBlockingQueue.poll());
        System.out.println(arrayBlockingQueue.poll());
        System.out.println(arrayBlockingQueue.poll());

        arrayBlockingQueue.poll(2,TimeUnit.SECONDS);//等待超过两秒,退出
    }
}

synchronousQueue同步队列
没有容量,进去一个元素,必须等待取出来之后,才能再往里面放一个元素
put、take

package bq;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.TimeUnit;

/**
* 同步队列
* 和其他的 BlockingQueue 不一样,SynchronousQueue不存储元素
* put了一个元素,必须从里面先take取出来,否则不能在put进去值
*/
public class synchronousQueueDemo {
  public static void main(String[] args) {
     BlockingQueue<String> synchronousQueue= new SynchronousQueue<>();//同步队列
      new Thread(()->{

          try {
              System.out.println(Thread.currentThread().getName()+"put 1");
              synchronousQueue.put("1");
              System.out.println(Thread.currentThread().getName()+"put 2");
              synchronousQueue.put("2");
              System.out.println(Thread.currentThread().getName()+"put 3");
              synchronousQueue.put("3");
          } catch (InterruptedException e) {
              e.printStackTrace();
          }
      },"T1").start();

      new Thread(()->{
          try {
              TimeUnit.SECONDS.sleep(3);
              System.out.println(Thread.currentThread().getName()+"=>"+synchronousQueue.take());
              TimeUnit.SECONDS.sleep(3);
              System.out.println(Thread.currentThread().getName()+"=>"+synchronousQueue.take());
              TimeUnit.SECONDS.sleep(3);
              System.out.println(Thread.currentThread().getName()+"=>"+synchronousQueue.take());
          } catch (InterruptedException e) {
              e.printStackTrace();
          }
      },"T2").start();
  }
}

线程池

线程池:三大方法、7大参数、4种拒绝策略
池化技术:程序的运行,本质是占用系统的资源!优化资源的使用==>池化技术
线程池、连接池、内存池、对象池… 创建和销毁十分浪费资源
池化技术:事先准备好一些资源,有人要用,就来我这里来拿,用完之后还给我
线程池好处:

  1. 降低资源的消耗
  2. 提高响应的速度
  3. 方便管理
    线程复用、可以控制最大并发数,管理线程
    JUC
    三大方法
package pool;

import java.util.concurrent.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TransferQueue;
// Executors 工具类 3大方法

public class Demo01 {
    public static void main(String[] args) {
        //ExecutorService executorService = Executors.newSingleThreadExecutor();//单个线程
        //ExecutorService executorService = Executors.newFixedThreadPool(5);//创建一个固定的线程池大小
        ExecutorService executorService = Executors.newCachedThreadPool();//可伸缩的线程池

        try {
            for (int i = 0; i < 10; i++) {
                //使用了线程池过后,使用线程池来创建线程
                executorService.execute(()->{
                    System.out.println(Thread.currentThread().getName()+" OK");
                });
            }

        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //线程池用完,程序结束,关闭线程池
            executorService.shutdown();
        }
    }

}

7大参数
源码分析

 public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }
 public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }
  public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,//21亿 OOM
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
    //本质:ThreadPoolExecutor()
 public ThreadPoolExecutor(int corePoolSize,//核心线程池大小
                              int maximumPoolSize,//最大核心线程池大小
                              long keepAliveTime,//超时了没有人调用就会释放
                              TimeUnit unit,//超时单位
                              BlockingQueue<Runnable> workQueue,//阻塞队列
                              ThreadFactory threadFactory,//线程工厂,创建线程的,一般不用动
                              RejectedExecutionHandler handler//拒绝策略) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

JUC
手动创建线程池

package pool;

import java.util.concurrent.*;
// Executors 工具类 3大方法
//AbortPolicy()//银行满了,还有人进来,不处理这个人的,抛出异常
//CallerRunsPolicy()//哪来的去哪里
//DiscardPolicy()//队列满了,丢掉任务,不抛出异常
//DiscardOldestPolicy()队列满了,尝试去和最早的竞争,不会抛出异常
public class Demo01 {
    public static void main(String[] args) {
        //自定义线程池
        ExecutorService executorService =new ThreadPoolExecutor(
                                        2,
                                    5,
                                       3,
                                       TimeUnit.SECONDS,
                                        new LinkedBlockingDeque<>(3),
                                        Executors.defaultThreadFactory(),
                                        new ThreadPoolExecutor.DiscardOldestPolicy());

        try {
            //最大承载:Deque+max
            //超过则抛出RejectedExecutionException:
            for (int i = 0; i < 8; i++) {
                //使用了线程池过后,使用线程池来创建线程
                executorService.execute(()->{
                    System.out.println(Thread.currentThread().getName()+" OK");
                });
            }

        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //线程池用完,程序结束,关闭线程池
            executorService.shutdown();
        }
    }

}

四种拒绝策略
JUC
AbortPolicy()//银行满了,还有人进来,不处理这个人的,抛出异常
CallerRunsPolicy()//哪来的去哪里
DiscardPolicy()//队列满了,丢掉任务,不抛出异常
DiscardOldestPolicy()队列满了,尝试去和最早的竞争,不会抛出异常
IO密集型,cpu密集型(调优)
最大线程到底该如何定义
1、cpu密集型 几核,就是几,可以保证cpu的效率最高
2、IO 密集型 >判断你程序中十分占用io的线程
程序,15个大型任务,io十分占用资源

四大函数型接口

新时代程序源:lambda表达式、链式编程、函数式接口、Stream流式计算

函数式接口:只有一个方法的接口。简化编程模型,在新版本的框架底层大量应用。foreach(消费者类的函数式接口)
JUC
function函数式接口
JUC

package function;

import java.util.function.Function;

/**
 * Function函数型接口,有一个输入参数,忧郁哥输出
 * 只要是 函数型接口,可以用lambda表达式简化
 */
public class Demo01 {
    public static void main(String[] args) {

   /*     Function function = new Function<String,String>() {
            @Override
            public String apply(String o) {
                return o;
            }
        };*/
        Function<String,String> function =(str)->{return str;};
        System.out.println(function.apply("asd"));
    }
}


断定型接口

package function;

import java.util.function.Predicate;

/**
 * 断定型接口,有一个输入参数,返回值只能是布尔值
 */
public class Demo02 {
    public static void main(String[] args) {
       /* Predicate<String> predicate = new Predicate<String>() {
            @Override
            public boolean test(String o) {
                return o.isEmpty();
            }
        };*/
        Predicate<String> predicate =(str)->{ return str.isEmpty();};
        System.out.println(predicate.test("123"));


    }
}

consumer消费性接口
JUC

package function;

import java.util.function.Consumer;

/**
 * consumer 消费性接口,只有输入,没有返回值
 */
public class Demo03 {
    public static void main(String[] args) {
       /* Consumer<String> consumer = new Consumer<String>() {
            @Override
            public void accept(String str) {
                System.out.println(str);
            }
        };*/
        Consumer<String> consumer = (str)->{System.out.println(str);};
        consumer.accept("sad");
    }
}

supplier供给性接口
JUC

package function;

import java.util.function.Supplier;

public class Demo04 {
    public static void main(String[] args) {
      /*  Supplier<String> supplier = new Supplier<String>() {
            @Override
            public String get() {
                System.out.println("get");
                return "1024";
            }
        };*/
        Supplier<String> supplier =()->{  System.out.println("get");return "1024";};
        System.out.println(supplier.get());
    }
}

Stream流式计算

JUC

package stream;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
@AllArgsConstructor
public class User {
  private int id;
  private String name;
  private int age;
}

package stream;

import java.util.Arrays;
import java.util.List;

/**
 * 现在有5个用户,筛选:一行代码实现
 * 1.ID必须是偶数
 * 2.年龄必须大于23岁
 * 3.用户名转为大写字母
 * 4.用户字母倒着排序
 * 5.只输出一个用户
 */
public class Test {
    public static void main(String[] args) {
        User user1 = new User(1,"a",21);
        User user2 = new User(2,"b",22);
        User user3 = new User(3,"c",23);
        User user4 = new User(4,"d",24);
        User user5 = new User(6,"e",25);
        //集合就是存储
        List<User> list = Arrays.asList(user1, user2, user3, user4, user5);
        //计算交给Stream流
        //lambda表达式、链式编程、函数接口、Stream流式计算
        list.stream()
                .filter(user -> {return user.getId()%2==0;})
                .filter(user -> {return user.getAge()>23;})
                .map(user -> {return user.getName().toUpperCase();})
                .sorted((uu1,uu2)->{return uu2.compareTo(uu1);})
                .limit(1)
                .forEach(System.out::println);

    }
}

ForkJoin

主要并行执行任务,提高效率,大数据量
JUC
ForkJoin特点:工作窃取
这个里面维护的都是双端队列
JUC
JUC

package forkjoin;

import java.util.concurrent.RecursiveTask;

/**
 * 求和计算的任务
 * 如何使用forkjoin?
 * 1.forkjoinPool 通过它来执行
 * 2.计算任务 forkjoinPool.excute(ForkJoinTask task)
 * 3.计算类要继承ForkJoinTask
 */
public class ForkJoinDemo extends RecursiveTask<Long> {
    private Long start;
    private Long end;
    //临界值
    private Long temp=10000L;

    public ForkJoinDemo(Long start, Long end) {
        this.start = start;
        this.end = end;
    }
    //计算方法
    @Override
    protected Long compute() {
        if((end-start)<temp){
            Long sum=0L;
            for (Long i = start; i <=end; i++) {
                sum+=i;
            }
            return sum;
        }else {//forkjoin 递归
            long middle = (start + end) / 2;//中间值
            ForkJoinDemo task1 = new ForkJoinDemo(start, middle);
            task1.fork();//拆分任务,把任务压入线程队列
            ForkJoinDemo task2 = new ForkJoinDemo(middle+1, end);
            task2.fork();
            return task1.join()+task2.join();

        }
    }
}

package forkjoin;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;

public class Test {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //test1();9731
        //test2();10709
        test3();//543

    }
    //普通方法
    public static void test1(){
        Long sum=0L;
        long start=System.currentTimeMillis();
        for (Long i=1L;i<1000000000;i++){
            sum+=i;
        }
        long end=System.currentTimeMillis();
        System.out.println("sum="+sum+"时间:"+(end-start));
    }
    //会使用forkjoin
    public static void test2() throws ExecutionException, InterruptedException {
        long start=System.currentTimeMillis();
        ForkJoinPool forkJoinPool=new ForkJoinPool();
        ForkJoinTask<Long> task = new ForkJoinDemo(0L, 1000000000L);
        //forkJoinPool.execute(task);//执行任务
        ForkJoinTask<Long> submit = forkJoinPool.submit(task);//提交任务
        Long sum = submit.get();

        long end=System.currentTimeMillis();
        System.out.println("sum="+sum+"时间:"+(end-start));
    }
    public static void test3(){
        long start=System.currentTimeMillis();
        //Stream并行流
       long sum= LongStream.rangeClosed(0L,1000000000L).parallel().reduce(0,Long::sum);
        long end=System.currentTimeMillis();
        System.out.println("sum="+"时间:"+(end-start));
    }
}

异步回调

初衷:对将来的某个事件的结果进行建模
JUC

package future;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;

/**
 * 异步调用:CompletableFuture
 * 异步执行
 * 成功回调
 * 失败回调
 */
public class Demo1 {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //发起一个请求 没有返回值的runAsync异步回调
      /*  CompletableFuture<Void> objectCompletableFuture = CompletableFuture.runAsync(()->{
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"runAsync=>void");
        });
        System.out.println("111111");
        objectCompletableFuture.get();//获取阻塞执行结果*/
      //有返回值的异步回调
        CompletableFuture<Integer> objectCompletableFuture = CompletableFuture.supplyAsync(()->{
            System.out.println(Thread.currentThread().getName()+"supplyAsync=>Integer");
            return 1024;
        });
        System.out.println(objectCompletableFuture.whenComplete((t, u) -> {
            System.out.println("t--->" + t);//正常的返回结果
            System.out.println("u--->" + u);//错误信息
        }).exceptionally((e) -> {
            e.printStackTrace();
            System.out.println(e.getMessage());
            return 233;//可以获取到错误的返回结果
        }).get());
    }
}

JMM

volatile是虚拟机提供的轻量级的同步机制

  1. 保证可见性
  2. 不保证原子性
  3. 禁止指令重排

关于JMM的一些同步约定

  1. 线程解锁前,必须把共享变量刷立刻回主存
  2. 线程加锁前,必须读取主存中的最新值到内存中
  3. 加锁和解锁是同一把锁

线程 工作内存、主内存
8种操作
JUC
JUC
JUC

问题:程序不知道主内存的值已经被修改过了
JUC

Volatile

1.保证可见性

package tvolatile;

import java.util.concurrent.TimeUnit;

public class JMMDemo {
    //不加volatile 程序就会死循环
    //加volatile可以保证可见性
    private volatile static int num=0;
    public static void main(String[] args) {
        new Thread(()->{//线程1 对主内存的变化不知道
            while (num==0){

            }
        }).start();
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        num=1;
        System.out.println(num);
    }
}

2.不保证原子性
原子性:不可分割
线程A在执行任务的时候,不能被打扰,也不能被分割,要么同时成功,要么同时失败

package tvolatile;
//volatile不保证原子性
public class VDemo2 {
    private volatile static int num=0;
    public static void add(){
        num++;
    }

    public static void main(String[] args) {
        //理论上num的结果应该为2万
        for (int i = 0; i < 20; i++) {
            new Thread(()->{
                for (int i1 = 0; i1 < 1000; i1++) {
                    add();
                }
            }).start();
        }
        while (Thread.activeCount()>2){//main gc
            Thread.yield();
        }
        System.out.println(Thread.currentThread().getName()+" "+num);
    }
}

使用原子类,解决原子问题
JUC

package tvolatile;

import java.util.concurrent.atomic.AtomicInteger;

//volatile不保证原子性
public class VDemo2 {
    //原子类的Integer
    private volatile static AtomicInteger num=new AtomicInteger();
    public static void add(){
       // num++;//不是原子性操作
        num.getAndIncrement();//AtomicInteger+1  方法  CAS
    }

    public static void main(String[] args) {
        //理论上num的结果应该为2万
        for (int i = 0; i < 20; i++) {
            new Thread(()->{
                for (int i1 = 0; i1 < 1000; i1++) {
                    add();
                }
            }).start();
        }
        while (Thread.activeCount()>2){//main gc
            Thread.yield();
        }
        System.out.println(Thread.currentThread().getName()+" "+num);
    }
}

这些类的底层都直接和操作系统挂钩! 在内存中修改值!Unsafe类是一个很特殊的存在

指令重排:你写的程序,计算机并不是按照你写的那样去执行的
源代码—>编译器优化的重排–>指令并行也可能会重排–>内存系统也会重排–>执行
处理器在进行指令重排的时候,考虑:数据之间的依赖性
volatile可以避免指令重排

内存屏障,CPU指令,作用:
1.保证特定的操作的执行顺序!
2.可以保证某些变量的内存可见性(利用这些特性volatile实现了可见性)
JUC
volatile是可以保证可见性,不能保证原子性,由于内存屏障,可以保证避免指令重排的现象产生

单例模式

饿汉式、DCL懒汉式

饿汉式

package single;

/**
 * 饿汉式
 */
public class Hungry {
    //可能会浪费空间
    private byte[] data1=new byte[1024*1024];
    private byte[] data2=new byte[1024*1024];
    private byte[] data3=new byte[1024*1024];
    private byte[] data4=new byte[1024*1024];
    
    private Hungry(){

    }
    private final static Hungry HUNGRY=new Hungry();
    public static Hungry getInstance(){
        return HUNGRY;
    }
}

DCL懒汉式

package single;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;

/**
 * 懒汉式
 *
 */
public class LazyMan {
    private static boolean flag=false;
    private LazyMan(){
        synchronized (LazyMan.class){
            if (flag==false){
                flag=true;
            }else {
                throw new RuntimeException("不要试图用反射破坏异常");
            }
        }

        System.out.println(Thread.currentThread().getName()+" ok");

    }
    private volatile static LazyMan lazyMan;
    //双重检测锁模式的懒汉式单例DCL懒汉式
    public static LazyMan getInstance() {
        if (lazyMan==null){
            synchronized (LazyMan.class){
                if (lazyMan==null){
                    lazyMan=new LazyMan();//不是一个原子性操作
                    /**
                     * 1.分配内存空间
                     * 2.执行构造方法,初始化对象
                     * 3.把这个对象指向这个空间
                     */
                }
            }
        }

        return lazyMan;
    }
    //多线程并发
   /* public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
          new Thread(()->{
              LazyMan.getInstance();
          }).start();
        }
    }*/

   //反射
    public static void main(String[] args) throws Exception {
       //LazyMan instance = LazyMan.getInstance();
        Field flag = LazyMan.class.getDeclaredField("flag");
        flag.setAccessible(true);

        Constructor<LazyMan> declaredConstructor = LazyMan.class.getDeclaredConstructor(null);
        declaredConstructor.setAccessible(true);
        LazyMan  instance = declaredConstructor.newInstance();

        flag.set(instance,false);

        LazyMan  instance2 = declaredConstructor.newInstance();
        System.out.println(instance);
        System.out.println( instance2);



    }
}

静态内部类

package single;
//静态内部类
public class Holder {
    private Holder(){

    }
    public static Holder getInstance(){
        return InnerClass.HOLDER;
    }
    public static class InnerClass{
        private static final Holder HOLDER=new Holder();
    }
}

单例不安全,因为反射

枚举

package single;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;

/**
 *
 */
public enum  EnumSingle {
    INSTANCE;
    public EnumSingle getInstance(){
        return INSTANCE;
    }
}
class Test{
    public static void main(String[] args) throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException {
        EnumSingle instance = EnumSingle.INSTANCE;
        Constructor<EnumSingle> declaredConstructor = EnumSingle.class.getDeclaredConstructor(String.class,int.class);//用有参,不能用无参
        declaredConstructor.setAccessible(true);
        EnumSingle instance2= declaredConstructor.newInstance();
        //java.lang.NoSuchMethodException: single.EnumSingle.<init>()
        System.out.println(instance);
        System.out.println(instance2);


    }
}

JUC

深入理解CAS

package cas;

import jdk.nashorn.internal.ir.CallNode;

import java.util.concurrent.atomic.AtomicInteger;

public class CASDemo {

    //CAS compareAndSet():比较并交换
    public static void main(String[] args) {
        AtomicInteger atomicInteger=new AtomicInteger(2020);
        //如果我期望的值达到了,那么就更新,否则不更新
        System.out.println(atomicInteger.compareAndSet(2020, 2021));
        System.out.println(atomicInteger.get());
        System.out.println(atomicInteger.compareAndSet(2020, 2021));
        System.out.println(atomicInteger.get());

    }
}

unsafe类:
JUC
JUC
JUC
CAS:比较当前工作内存中的值和主内存中的值,如果这个值是期望的,那么则执行操作!如果不是就一直循环。
缺点:1.循环浪费时间。2.一次性只能保证一个共享变量的原子性。3.ABA问题

ABA问题:
JUC

package cas;

import jdk.nashorn.internal.ir.CallNode;

import java.util.concurrent.atomic.AtomicInteger;

public class CASDemo {

    //CAS compareAndSet():比较并交换
    public static void main(String[] args) {
        AtomicInteger atomicInteger=new AtomicInteger(2020);
        //============捣乱的线程=============
        //如果我期望的值达到了,那么就更新,否则不更新
        System.out.println(atomicInteger.compareAndSet(2020, 2021));
        System.out.println(atomicInteger.get());
        System.out.println(atomicInteger.compareAndSet(2021, 2020));
        System.out.println(atomicInteger.get());
        //============期望的线程==============
        System.out.println(atomicInteger.compareAndSet(2020, 6666));
        System.out.println(atomicInteger.get());

    }
}

原子引用

解决ABA问题,引入原子引用

带版本号的原子操作!

Integer使用了对象缓存机制,默认范围是-128~127,推荐使用静态工厂方法valueOf获取对象实例,而不是new,因为valueOf使用缓存,而new一定会创建新的对象分配新的内存空间
JUC

package cas;

import jdk.nashorn.internal.ir.CallNode;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicStampedReference;

public class CASDemo {
    //AtomicStampedReference 注意,如果泛型是一个包装类,注意对象的引用问题
    //正常在业务操作中,这里面比较的是一个对象
    static AtomicStampedReference<Integer> atomicInteger = new AtomicStampedReference<>(1, 1);
    //CAS compareAndSet():比较并交换
    public static void main(String[] args) {

        new Thread(()->{
            int stamp = atomicInteger.getStamp();//获得版本号
            System.out.println("A1=>"+stamp);

            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(atomicInteger.compareAndSet(1, 2, atomicInteger.getStamp(), atomicInteger.getStamp() + 1));
            System.out.println("A2=>"+atomicInteger.getStamp());
            System.out.println(atomicInteger.compareAndSet(2, 1, atomicInteger.getStamp(), atomicInteger.getStamp() + 1));
            System.out.println("A3=>"+atomicInteger.getStamp());
        },"A").start();
        //乐观锁的原理相同
        new Thread(()->{
            int stamp = atomicInteger.getStamp();//获得版本号
            System.out.println("B1=>"+stamp);
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(atomicInteger.compareAndSet(1, 6, stamp, stamp + 1));
            System.out.println("B2=>"+atomicInteger.getStamp());
        },"B").start();
    }
}

可重入锁(递归锁)

JUC
synchronized

package lock;

public class Demo01 {
    public static void main(String[] args) {
        Phone phone = new Phone();
        new Thread(()->{
            phone.sms();
        },"A").start();

        new Thread(()->{
            phone.sms();
        },"B").start();
    }
}
class Phone{
    public synchronized void sms(){
        System.out.println(Thread.currentThread().getName()+"->sms");
        call();//这里有一把锁
    }
    public synchronized void call(){
        System.out.println(Thread.currentThread().getName()+"->call");
    }
}

lock

package lock;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class Demo02 {
    public static void main(String[] args) {
        Phone2 phone = new Phone2();
        new Thread(()->{
            phone.sms();
        },"A").start();

        new Thread(()->{
            phone.sms();
        },"B").start();
    }
}
class Phone2{
    Lock lock=new ReentrantLock();
    public void sms(){
        lock.lock();//lock锁,必须配对,否则就会死在里面
        try {
            System.out.println(Thread.currentThread().getName()+"->sms");
            call();//这里有一把锁
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }

    }
    public  void call(){
        lock.lock();
        try {
            System.out.println(Thread.currentThread().getName()+"->call");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }

    }
}

自旋锁(spinlock)

JUC

package lock;

import jdk.nashorn.internal.ir.CallNode;

import java.util.concurrent.atomic.AtomicReference;

/**
 * 自旋锁
 */
public class SpinLock {
    AtomicReference<Thread> atomicReference=new AtomicReference<>();
    //加锁
    public void myLock(){
        Thread thread = Thread.currentThread();
        System.out.println(Thread.currentThread().getName()+"==> mylock");
        //自旋锁
        while (!atomicReference.compareAndSet(null,thread)){

        }

    }

    //解锁
    public void myUnLock(){
        Thread thread = Thread.currentThread();
        System.out.println(Thread.currentThread().getName()+"==> myUnlock");
        atomicReference.compareAndSet(thread,null);
    }

}

测试

package lock;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;

public class TsetSpinLock {
    public static void main(String[] args) throws InterruptedException {
      /*  ReentrantLock reentrantLock = new ReentrantLock();
        reentrantLock.lock();
        reentrantLock.unlock();*/
      //底层使用的自旋锁CAS
      SpinLock lock=new SpinLock();

        new Thread(()->{
            lock.myLock();
            try {
                TimeUnit.SECONDS.sleep(5);
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lock.myUnLock();
            }
        },"T1").start();
        TimeUnit.SECONDS.sleep(1);

        new Thread(()->{
            lock.myLock();
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lock.myUnLock();
            }
        },"T2").start();

    }
}

死锁

JUC
死锁测试

package lock;

import java.util.concurrent.TimeUnit;

public class DeadLockDemo {
    public static void main(String[] args) {
        String lockA="lockA";
        String lockB="lockB";


        new Thread(new MyThread(lockA,lockB),"T1").start();
        new Thread(new MyThread(lockB,lockA),"T2").start();

    }
}
class MyThread implements Runnable{
    private String lockA;
    private String lockB;

    public MyThread(String lockA, String lockB) {
        this.lockA = lockA;
        this.lockB = lockB;
    }

    @Override
    public void run() {
        synchronized (lockA){
            System.out.println(Thread.currentThread().getName()+"lock:"+lockA+"=>get"+lockB);

            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            synchronized (lockB){
                System.out.println(Thread.currentThread().getName()+"lock:"+lockB+"=>get"+lockA);
            }
        }
    }
}

解决问题:
1.使用 jps -l 定位进程号
JUC
2.使用 jstack 进程号找到死锁问题
JUC

上一篇:高龄白菜JAVA学习第十三天(线程池|线程总结|JUC并发编程1)


下一篇:java--JUC快速入门(彻底搞懂JUC)