JUC
- 什么是JUC
- lock锁
- 生产者和消费者问题
- 8锁现象
- 集合类不安全
- Callable
- 常用的辅助类
- 读写锁 ReadWriteLock
- 阻塞队列
- 线程池
- 四大函数型接口
- Stream流式计算
- ForkJoin
- 异步回调
- JMM
- Volatile
- 单例模式
- 深入理解CAS
- 原子引用
- 可重入锁(递归锁)
- 自旋锁(spinlock)
- 死锁
什么是JUC
lock锁
公平锁:十分公平,可以先来后到
非公平锁:十分不公平,可以插队(默认)
Synchronized和Lock区别
- Synchronized内置的java关键字,Lock是一个java类
- Synchronized无法判断获取锁的状态,Lock可以判断是否获取到了锁
- Synchronized会自动释放锁,lock必须要手动释放锁!如果不释放锁,死锁
- Synchronized线程1(获取锁,阻塞)、线程2(等待);Lock锁不一定会等待下去
- Synchronized可重入锁,不可以中断,非公平;Lock,可重入锁,可以判断锁,非公平(可自己设置)
- Synchronized适合锁少量的代码同步问题,Lock适合锁大量的同步代码
生产者和消费者问题
synchronized版
package pc;
/**
* 线程之间的通信问题:生产者消费者问题 等待唤醒
*线程交替执行 A B操作同一个变量 num=0
* A:num+1
* B:num-1
*/
public class A {
public static void main(String[] args) {
Data data=new Data();
new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"A").start();
new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"B").start();
}
}
//等待、业务、通知
class Data{//资源类
private int number=0;
//+1
public synchronized void increment() throws InterruptedException {
if(number!=0){
//等待
this.wait();
}
number++;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程,+1完毕
this.notifyAll();
}
//-1
public synchronized void decrement() throws InterruptedException {
if(number==0){
//等待
this.wait();
}
number--;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程,-1完毕
this.notifyAll();
}
}
存在问题:A、B、C、D4个线程!虚假唤醒
if改为while判断
JUC版
package pc;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class B {
public static void main(String[] args) {
Data2 data=new Data2();
new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"A").start();
new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"B").start();
new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"C").start();
new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"D").start();
}
}
//等待、业务、通知
class Data2{//资源类
private int number=0;
Lock lock=new ReentrantLock();
Condition condition = lock.newCondition();
//condition.await();等待
//condition.signalAll();唤醒全部
//+1
public void increment() throws InterruptedException {
lock.lock();
try {
//业务代码
while (number!=0){
//等待
condition.await();
}
number++;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程,+1完毕
condition.signalAll();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
}
}
//-1
public void decrement() throws InterruptedException {
lock.lock();
try {
//业务代码
while (number==0){
//等待
condition.await();
}
number--;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程,+1完毕
condition.signalAll();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
}
}
}
condition精准的通知唤醒线程
package pc;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class C {
public static void main(String[] args) {
Data3 data=new Data3();
new Thread(()->{
for (int i = 0; i < 10; i++) {
data.printA();
}
},"A").start();
new Thread(()->{ for (int i = 0; i < 10; i++) {
data.printB();
}},"B").start();
new Thread(()->{ for (int i = 0; i < 10; i++) {
data.printC();
}},"C").start();
}
}
class Data3{
private Lock lock=new ReentrantLock();
private Condition condition1=lock.newCondition();
private Condition condition2=lock.newCondition();
private Condition condition3=lock.newCondition();
private int num=1;
public void printA(){
lock.lock();
try {
while (num!=1){
condition1.await();
}
System.out.println(Thread.currentThread().getName()+"=>AAAAA");
//唤醒B
num=2;
condition2.signal();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
}
}
public void printB(){
lock.lock();
try {
while (num!=2){
condition2.await();
}
System.out.println(Thread.currentThread().getName()+"=>BBBBB");
//唤醒C
num=3;
condition3.signal();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
}
}
public void printC(){
lock.lock();
try {
while (num!=3){
condition3.await();
}
System.out.println(Thread.currentThread().getName()+"=>CCCCC");
num=1;
//唤醒A
condition1.signal();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
}
}
}
8锁现象
1、标准情况下,打印两个线程 首先打印send,在打印call
package lock8;
import java.util.concurrent.TimeUnit;
/**
* 8锁,关于锁的8个问题
* 1、标准情况下,打印两个线程 首先打印send,在打印call
*
*/
public class Test1 {
public static void main(String[] args) {
Phone phone=new Phone();
new Thread(()->{phone.send();},"A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(()->{phone.call();},"B").start();
}
}
class Phone{
public synchronized void send(){
System.out.println("send");
}
public synchronized void call(){
System.out.println("call");
}
}
2.send方法延迟4秒,打印两个线程 首先打印send,在打印call
synchronized 锁的对象是方法的调用者
两个方法用的是同一个锁,谁先拿到谁先执行
package lock8;
import java.util.concurrent.TimeUnit;
/**
* 8锁,关于锁的8个问题
* 1、标准情况下,打印两个线程 首先打印send,在打印call
* 2.send延迟4秒
*/
public class Test1 {
public static void main(String[] args) {
Phone phone=new Phone();
new Thread(()->{phone.send();},"A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(()->{phone.call();},"B").start();
}
}
class Phone{
// synchronized 锁的对象是方法的调用者
//两个方法用的是同一个锁,谁先拿到谁先执行
public synchronized void send(){
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("send");
}
public synchronized void call(){
System.out.println("call");
}
}
3.增加一个普通方法hello,先打印hello,在打印send
package lock8;
import java.util.concurrent.TimeUnit;
/**
* 增加一个普通方法,先打印hello,再打印send
*/
public class Test2 {
public static void main(String[] args) {
Phone2 phone=new Phone2();
new Thread(()->{phone.send();},"A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(()->{phone.hello();},"B").start();
}
}
class Phone2{
// synchronized 锁的对象是方法的调用者
public synchronized void send(){
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("send");
}
public synchronized void call(){
System.out.println("call");
}
//没有锁,不是同步方法,不受锁的影响
public void hello(){
System.out.println("hello");
}
}
4.两个对象,两个同步方法,先打印call,在打印send
两个对象,两个调用者,两把锁
package lock8;
import java.util.concurrent.TimeUnit;
/**
* 增加一个普通方法,先打印hello,再打印send
*/
public class Test2 {
public static void main(String[] args) {
//两个对象,两个调用者,两把锁
Phone2 phone1=new Phone2();
Phone2 phone2=new Phone2();
new Thread(()->{phone1.send();},"A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(()->{phone2.call();},"B").start();
}
}
class Phone2{
// synchronized 锁的对象是方法的调用者
public synchronized void send(){
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("send");
}
public synchronized void call(){
System.out.println("call");
}
//没有锁,不是同步方法,不受锁的影响
public void hello(){
System.out.println("hello");
}
}
5.增加两个静态同步方法,只有一个对象,先打印send,在打印call
static 静态方法
类一加载就有了 锁的是Class
package lock8;
import java.util.concurrent.TimeUnit;
/**
* 增加两个静态同步方法,只有一个对象,先打印send
*/
public class Test3 {
public static void main(String[] args) {
Phone3 phone=new Phone3();
new Thread(()->{phone.send();},"A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(()->{phone.call();},"B").start();
}
}
//Phone3唯一有个class对象
class Phone3{
// synchronized 锁的对象是方法的调用者
//static 静态方法
//类一加载就有了 锁的是Class
public static synchronized void send(){
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("send");
}
public static synchronized void call(){
System.out.println("call");
}
}
6.两个静态同步方法,两个对象,先打印send,在打印call
package lock8;
import java.util.concurrent.TimeUnit;
/**
*
*/
public class Test3 {
public static void main(String[] args) {
//两个对象的Class类模板只有一个,static,锁的是class
Phone3 phone1=new Phone3();
Phone3 phone2=new Phone3();
new Thread(()->{phone1.send();},"A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(()->{phone2.call();},"B").start();
}
}
//Phone3唯一有个class对象
class Phone3{
// synchronized 锁的对象是方法的调用者
//static 静态方法
//类一加载就有了 锁的是Class
public static synchronized void send(){
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("send");
}
public static synchronized void call(){
System.out.println("call");
}
}
7.一个静态同步方法,一个同步方法,一个对象,先打印call,再打印send
package lock8;
import java.util.concurrent.TimeUnit;
public class Test4{
public static void main(String[] args) {
//两个对象的Class类模板只有一个,static,锁的是class
Phone4 phone1=new Phone4();
new Thread(()->{phone1.send();},"A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(()->{phone1.call();},"B").start();
}
}
//Phone3唯一有个class对象
class Phone4{
//静态同步方法,锁的是class类模板
public static synchronized void send(){
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("send");
}
//普通同步方法 锁的调用者
public synchronized void call(){
System.out.println("call");
}
}
小结:new this 具体的一个对象,static Class唯一的一个模板
集合类不安全
list不安全
package unsafe;
import java.util.*;
import java.util.concurrent.CopyOnWriteArrayList;
// java.util.ConcurrentModificationException并发修改异常
public class Test {
public static void main(String[] args) {
//并发下ArrayList 不安全的
/**
* 解决方案
* 1.List<String> list=new Vector<>();
* 2. List<String> list=Collections.synchronizedList(new ArrayList<>());
* 3. List<String> list=new CopyOnWriteArrayList<>();
*/
//CopyOnWrite 写入时复制 COW 计算机程序设计领域的一种优化策略
//多个线程调用的时候,list,读取的时候,固定的,写入(覆盖)
//在写入的时候避免覆盖,造成数据问题
List<String> list=new CopyOnWriteArrayList<>();
for (int i = 0; i < 10; i++) {
new Thread(()->{
list.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(list);
},String.valueOf(i)).start();
}
}
}
set不安全
package unsafe;
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;
import java.util.UUID;
import java.util.concurrent.CopyOnWriteArraySet;
/*java.util.ConcurrentModificationException
*1. Set<String> set= Collections.synchronizedSet(new HashSet<>());
*2.Set<String> set=new CopyOnWriteArraySet<>();
*/
public class SetTest {
public static void main(String[] args) {
//Set<String> set=new HashSet<>();
//Set<String> set= Collections.synchronizedSet(new HashSet<>());
Set<String> set=new CopyOnWriteArraySet<>();
for (int i = 0; i < 30; i++) {
new Thread(()->{
set.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(set);
},String.valueOf(i)).start();
}
}
}
map不安全
package unsafe;
import java.util.HashMap;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.ConcurrentHashMap;
//java.util.ConcurrentModificationException
public class MapTest {
public static void main(String[] args) {
//Map<String, String> map = new HashMap<>();
Map<String, String> map = new ConcurrentHashMap<>();
for (int i = 0; i < 30; i++) {
new Thread(()->{
map.put(Thread.currentThread().getName(), UUID.randomUUID().toString().substring(0,5));
System.out.println(map);
},String.valueOf(i)).start();
}
}
}
Callable
- 可以有返回值
- 可以抛出异常
- 方法不同,run()/call()
package callable;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
public class CallableTest {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//new Thread(new Runnable()).start();
//new Thread(new FutureTask<V>()).start();
//new Thread(new FutureTask<V>(Callable)).start();
new Thread().start();//怎么启动Callable
NyThread thread=new NyThread();
FutureTask futureTask = new FutureTask(thread);//适配类
new Thread(futureTask,"A").start();
new Thread(futureTask,"B").start();//结果会被缓存,效率高
Integer o = (Integer) futureTask.get();//这个get()方法可能会产生阻塞,把他放在最后,或者使用异步通信来处理,获取Callable的返回结果
System.out.println(o);
}
}
class NyThread implements Callable<Integer> {
@Override
public Integer call(){
System.out.println("call() ");
return 1024;
}
}
1.有缓存
2.结果可能需要等待,会阻塞!
常用的辅助类
1.CountDownLatch
package add;
import java.util.concurrent.CountDownLatch;
public class CountDownLatchDemo {
public static void main(String[] args) throws InterruptedException {
//总数是6,必须要执行任务的时候,再使用!
CountDownLatch countDownLatch = new CountDownLatch(6);
for (int i = 1; i <= 6; i++) {
new Thread(()->{
System.out.println(Thread.currentThread().getName()+"GO OUT");
countDownLatch.countDown();//数量-1
},String.valueOf(i)).start();
}
countDownLatch.await();//等待计数器归零,然后再向下执行
System.out.println("Close Door");
}
}
原理:
countDownLatch.countDown();//数量-1
countDownLatch.await();//等待计数器归零,然后再向下执行
每次有线程调用countDown()数量-1,假设计数器变为0,countDownLatch.await()就会被唤醒,继续执行
2.CyclicBarrier
加法计数器
package add;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo {
public static void main(String[] args) {
CyclicBarrier cyclicBarrier = new CyclicBarrier(7,()->{
System.out.println("AAAAAA");
});
for (int i = 1; i <=7; i++) {
final int temp=i;
new Thread(()->{
System.out.println(Thread.currentThread().getName()+"=>"+temp);
try {
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
}
3.Semaphore
信号量
package add;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
public class SemaphoreDemo {
public static void main(String[] args) {
//线程数量:停车位数量为3,限流!
Semaphore semaphore = new Semaphore(3);
//6辆车,3个停车位
for (int i = 1; i <= 6; i++) {
new Thread(()->{
//acquire()得到
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName()+"抢到车位");
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName()+"离开车位");
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
semaphore.release(); //release()释放
}
},String.valueOf(i)).start();
}
}
}
semaphore.acquire();获得,假设如果已经满了,等待,等待被释放为止
semaphore.release();释放,会将当前的信号量释放,然后唤醒等待的线程
作用:多个共享资源互斥的使用!并发限流,控制最大的线程数
读写锁 ReadWriteLock
package rw;
import jdk.nashorn.internal.ir.CallNode;
import javax.sound.midi.Track;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* 独占锁(写锁) 一次只能被一个线程占有
* 共享锁(读锁) 多个线程可以同时占有
* ReadWriteLock
* 读-读 可以共存
* 读-写 不能共存
* 写-写 不能共存
*/
public class ReadWriteLockDemo {
public static void main(String[] args) {
// MyCache myCache = new MyCache();
MyCacheLock myCache = new MyCacheLock();
//写入
for (int i = 1; i <= 5; i++) {
final int temp=i;
new Thread(()->{
myCache.put(temp+"",temp+"");
},String.valueOf(i)).start();
}
//读取
for (int i = 1; i <= 5; i++) {
final int temp=i;
new Thread(()->{
myCache.get(temp+"");
},String.valueOf(i)).start();
}
}
}
//加锁
class MyCacheLock{
private volatile Map<String,Object> map=new HashMap<>();
//读写锁,更加细粒度的控制
private ReadWriteLock readWriteLock= new ReentrantReadWriteLock();
//存,写入的时候,只希望同时只有一个线程写
public void put(String key,Object value){
readWriteLock.writeLock().lock();
try {
System.out.println(Thread.currentThread().getName()+"写入"+key);
map.put(key,value);
System.out.println(Thread.currentThread().getName()+"写入OK");
} catch (Exception e) {
e.printStackTrace();
}finally {
readWriteLock.writeLock().unlock();
}
}
//取,读,所有人读
public void get(String key){
readWriteLock.readLock().lock();
try {
System.out.println(Thread.currentThread().getName()+"读取"+key);
Object o = map.get(key);
System.out.println(Thread.currentThread().getName()+"读取OK");
} catch (Exception e) {
e.printStackTrace();
} finally {
readWriteLock.readLock().unlock();
}
}
}
/**
* 自定义缓存
*/
class MyCache{
private volatile Map<String,Object> map=new HashMap<>();
//存,写
public void put(String key,Object value){
System.out.println(Thread.currentThread().getName()+"写入"+key);
map.put(key,value);
System.out.println(Thread.currentThread().getName()+"写入OK");
}
//取,读
public void get(String key){
System.out.println(Thread.currentThread().getName()+"读取"+key);
Object o = map.get(key);
System.out.println(Thread.currentThread().getName()+"读取OK");
}
}
阻塞队列
阻塞队列:
BlockingQueue不是新的东西
什么情况会使用多线程:多线程并发处理,线程池
四组API
package bq;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) throws InterruptedException {
//test1();
test3();
}
/**
* 抛出异常
*/
public static void test1(){
//队列的大小
ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(arrayBlockingQueue.add("a"));
System.out.println(arrayBlockingQueue.add("b"));
System.out.println(arrayBlockingQueue.add("c"));
//java.lang.IllegalStateException: Queue full 抛出异常
//System.out.println(arrayBlockingQueue.add("d"));
System.out.println(arrayBlockingQueue.element());//查看队首元素
System.out.println("=====================");
System.out.println(arrayBlockingQueue.remove());
System.out.println(arrayBlockingQueue.remove());
System.out.println(arrayBlockingQueue.remove());
// java.util.NoSuchElementException 抛出异常
//System.out.println(arrayBlockingQueue.remove());
}
/**
* 不抛出异常
*/
public static void test2(){
//队列的大小
ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(arrayBlockingQueue.offer("a"));
System.out.println(arrayBlockingQueue.offer("b"));
System.out.println(arrayBlockingQueue.offer("c"));
//System.out.println(arrayBlockingQueue.offer("d"));//false,不抛出异常
System.out.println(arrayBlockingQueue.peek());//检测队首元素
System.out.println("===================");
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll());
//System.out.println(arrayBlockingQueue.poll());//null不抛出异常
}
/**
* 等待、阻塞
* @throws InterruptedException
*/
public static void test3() throws InterruptedException {
//队列的大小
ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
//一直阻塞
arrayBlockingQueue.put("a");
arrayBlockingQueue.put("b");
arrayBlockingQueue.put("c");
//arrayBlockingQueue.put("d");//队列没有位置,一直阻塞
System.out.println(arrayBlockingQueue.take());
System.out.println(arrayBlockingQueue.take());
System.out.println(arrayBlockingQueue.take());
//System.out.println(arrayBlockingQueue.take());没有这个元素,一直阻塞
}
/**
* 等待,阻塞(等待超时)
*/
public static void test4() throws InterruptedException {
//队列的大小
ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
arrayBlockingQueue.offer("a");
arrayBlockingQueue.offer("b");
arrayBlockingQueue.offer("c");
arrayBlockingQueue.offer("d",2, TimeUnit.SECONDS);//等待超过两秒,退出
System.out.println("==================");
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll());
arrayBlockingQueue.poll(2,TimeUnit.SECONDS);//等待超过两秒,退出
}
}
synchronousQueue同步队列
没有容量,进去一个元素,必须等待取出来之后,才能再往里面放一个元素
put、take
package bq;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.TimeUnit;
/**
* 同步队列
* 和其他的 BlockingQueue 不一样,SynchronousQueue不存储元素
* put了一个元素,必须从里面先take取出来,否则不能在put进去值
*/
public class synchronousQueueDemo {
public static void main(String[] args) {
BlockingQueue<String> synchronousQueue= new SynchronousQueue<>();//同步队列
new Thread(()->{
try {
System.out.println(Thread.currentThread().getName()+"put 1");
synchronousQueue.put("1");
System.out.println(Thread.currentThread().getName()+"put 2");
synchronousQueue.put("2");
System.out.println(Thread.currentThread().getName()+"put 3");
synchronousQueue.put("3");
} catch (InterruptedException e) {
e.printStackTrace();
}
},"T1").start();
new Thread(()->{
try {
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName()+"=>"+synchronousQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName()+"=>"+synchronousQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName()+"=>"+synchronousQueue.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
},"T2").start();
}
}
线程池
线程池:三大方法、7大参数、4种拒绝策略
池化技术:程序的运行,本质是占用系统的资源!优化资源的使用==>池化技术
线程池、连接池、内存池、对象池… 创建和销毁十分浪费资源
池化技术:事先准备好一些资源,有人要用,就来我这里来拿,用完之后还给我
线程池好处:
- 降低资源的消耗
- 提高响应的速度
- 方便管理
线程复用、可以控制最大并发数,管理线程
三大方法
package pool;
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TransferQueue;
// Executors 工具类 3大方法
public class Demo01 {
public static void main(String[] args) {
//ExecutorService executorService = Executors.newSingleThreadExecutor();//单个线程
//ExecutorService executorService = Executors.newFixedThreadPool(5);//创建一个固定的线程池大小
ExecutorService executorService = Executors.newCachedThreadPool();//可伸缩的线程池
try {
for (int i = 0; i < 10; i++) {
//使用了线程池过后,使用线程池来创建线程
executorService.execute(()->{
System.out.println(Thread.currentThread().getName()+" OK");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//线程池用完,程序结束,关闭线程池
executorService.shutdown();
}
}
}
7大参数
源码分析
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,//21亿 OOM
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
//本质:ThreadPoolExecutor()
public ThreadPoolExecutor(int corePoolSize,//核心线程池大小
int maximumPoolSize,//最大核心线程池大小
long keepAliveTime,//超时了没有人调用就会释放
TimeUnit unit,//超时单位
BlockingQueue<Runnable> workQueue,//阻塞队列
ThreadFactory threadFactory,//线程工厂,创建线程的,一般不用动
RejectedExecutionHandler handler//拒绝策略) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?
null :
AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
手动创建线程池
package pool;
import java.util.concurrent.*;
// Executors 工具类 3大方法
//AbortPolicy()//银行满了,还有人进来,不处理这个人的,抛出异常
//CallerRunsPolicy()//哪来的去哪里
//DiscardPolicy()//队列满了,丢掉任务,不抛出异常
//DiscardOldestPolicy()队列满了,尝试去和最早的竞争,不会抛出异常
public class Demo01 {
public static void main(String[] args) {
//自定义线程池
ExecutorService executorService =new ThreadPoolExecutor(
2,
5,
3,
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy());
try {
//最大承载:Deque+max
//超过则抛出RejectedExecutionException:
for (int i = 0; i < 8; i++) {
//使用了线程池过后,使用线程池来创建线程
executorService.execute(()->{
System.out.println(Thread.currentThread().getName()+" OK");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//线程池用完,程序结束,关闭线程池
executorService.shutdown();
}
}
}
四种拒绝策略
AbortPolicy()//银行满了,还有人进来,不处理这个人的,抛出异常
CallerRunsPolicy()//哪来的去哪里
DiscardPolicy()//队列满了,丢掉任务,不抛出异常
DiscardOldestPolicy()队列满了,尝试去和最早的竞争,不会抛出异常
IO密集型,cpu密集型(调优)
最大线程到底该如何定义
1、cpu密集型 几核,就是几,可以保证cpu的效率最高
2、IO 密集型 >判断你程序中十分占用io的线程
程序,15个大型任务,io十分占用资源
四大函数型接口
新时代程序源:lambda表达式、链式编程、函数式接口、Stream流式计算
函数式接口:只有一个方法的接口。简化编程模型,在新版本的框架底层大量应用。foreach(消费者类的函数式接口)
function函数式接口
package function;
import java.util.function.Function;
/**
* Function函数型接口,有一个输入参数,忧郁哥输出
* 只要是 函数型接口,可以用lambda表达式简化
*/
public class Demo01 {
public static void main(String[] args) {
/* Function function = new Function<String,String>() {
@Override
public String apply(String o) {
return o;
}
};*/
Function<String,String> function =(str)->{return str;};
System.out.println(function.apply("asd"));
}
}
断定型接口
package function;
import java.util.function.Predicate;
/**
* 断定型接口,有一个输入参数,返回值只能是布尔值
*/
public class Demo02 {
public static void main(String[] args) {
/* Predicate<String> predicate = new Predicate<String>() {
@Override
public boolean test(String o) {
return o.isEmpty();
}
};*/
Predicate<String> predicate =(str)->{ return str.isEmpty();};
System.out.println(predicate.test("123"));
}
}
consumer消费性接口
package function;
import java.util.function.Consumer;
/**
* consumer 消费性接口,只有输入,没有返回值
*/
public class Demo03 {
public static void main(String[] args) {
/* Consumer<String> consumer = new Consumer<String>() {
@Override
public void accept(String str) {
System.out.println(str);
}
};*/
Consumer<String> consumer = (str)->{System.out.println(str);};
consumer.accept("sad");
}
}
supplier供给性接口
package function;
import java.util.function.Supplier;
public class Demo04 {
public static void main(String[] args) {
/* Supplier<String> supplier = new Supplier<String>() {
@Override
public String get() {
System.out.println("get");
return "1024";
}
};*/
Supplier<String> supplier =()->{ System.out.println("get");return "1024";};
System.out.println(supplier.get());
}
}
Stream流式计算
package stream;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
@Data
@NoArgsConstructor
@AllArgsConstructor
public class User {
private int id;
private String name;
private int age;
}
package stream;
import java.util.Arrays;
import java.util.List;
/**
* 现在有5个用户,筛选:一行代码实现
* 1.ID必须是偶数
* 2.年龄必须大于23岁
* 3.用户名转为大写字母
* 4.用户字母倒着排序
* 5.只输出一个用户
*/
public class Test {
public static void main(String[] args) {
User user1 = new User(1,"a",21);
User user2 = new User(2,"b",22);
User user3 = new User(3,"c",23);
User user4 = new User(4,"d",24);
User user5 = new User(6,"e",25);
//集合就是存储
List<User> list = Arrays.asList(user1, user2, user3, user4, user5);
//计算交给Stream流
//lambda表达式、链式编程、函数接口、Stream流式计算
list.stream()
.filter(user -> {return user.getId()%2==0;})
.filter(user -> {return user.getAge()>23;})
.map(user -> {return user.getName().toUpperCase();})
.sorted((uu1,uu2)->{return uu2.compareTo(uu1);})
.limit(1)
.forEach(System.out::println);
}
}
ForkJoin
主要并行执行任务,提高效率,大数据量
ForkJoin特点:工作窃取
这个里面维护的都是双端队列
package forkjoin;
import java.util.concurrent.RecursiveTask;
/**
* 求和计算的任务
* 如何使用forkjoin?
* 1.forkjoinPool 通过它来执行
* 2.计算任务 forkjoinPool.excute(ForkJoinTask task)
* 3.计算类要继承ForkJoinTask
*/
public class ForkJoinDemo extends RecursiveTask<Long> {
private Long start;
private Long end;
//临界值
private Long temp=10000L;
public ForkJoinDemo(Long start, Long end) {
this.start = start;
this.end = end;
}
//计算方法
@Override
protected Long compute() {
if((end-start)<temp){
Long sum=0L;
for (Long i = start; i <=end; i++) {
sum+=i;
}
return sum;
}else {//forkjoin 递归
long middle = (start + end) / 2;//中间值
ForkJoinDemo task1 = new ForkJoinDemo(start, middle);
task1.fork();//拆分任务,把任务压入线程队列
ForkJoinDemo task2 = new ForkJoinDemo(middle+1, end);
task2.fork();
return task1.join()+task2.join();
}
}
}
package forkjoin;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//test1();9731
//test2();10709
test3();//543
}
//普通方法
public static void test1(){
Long sum=0L;
long start=System.currentTimeMillis();
for (Long i=1L;i<1000000000;i++){
sum+=i;
}
long end=System.currentTimeMillis();
System.out.println("sum="+sum+"时间:"+(end-start));
}
//会使用forkjoin
public static void test2() throws ExecutionException, InterruptedException {
long start=System.currentTimeMillis();
ForkJoinPool forkJoinPool=new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinDemo(0L, 1000000000L);
//forkJoinPool.execute(task);//执行任务
ForkJoinTask<Long> submit = forkJoinPool.submit(task);//提交任务
Long sum = submit.get();
long end=System.currentTimeMillis();
System.out.println("sum="+sum+"时间:"+(end-start));
}
public static void test3(){
long start=System.currentTimeMillis();
//Stream并行流
long sum= LongStream.rangeClosed(0L,1000000000L).parallel().reduce(0,Long::sum);
long end=System.currentTimeMillis();
System.out.println("sum="+"时间:"+(end-start));
}
}
异步回调
初衷:对将来的某个事件的结果进行建模
package future;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
/**
* 异步调用:CompletableFuture
* 异步执行
* 成功回调
* 失败回调
*/
public class Demo1 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//发起一个请求 没有返回值的runAsync异步回调
/* CompletableFuture<Void> objectCompletableFuture = CompletableFuture.runAsync(()->{
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"runAsync=>void");
});
System.out.println("111111");
objectCompletableFuture.get();//获取阻塞执行结果*/
//有返回值的异步回调
CompletableFuture<Integer> objectCompletableFuture = CompletableFuture.supplyAsync(()->{
System.out.println(Thread.currentThread().getName()+"supplyAsync=>Integer");
return 1024;
});
System.out.println(objectCompletableFuture.whenComplete((t, u) -> {
System.out.println("t--->" + t);//正常的返回结果
System.out.println("u--->" + u);//错误信息
}).exceptionally((e) -> {
e.printStackTrace();
System.out.println(e.getMessage());
return 233;//可以获取到错误的返回结果
}).get());
}
}
JMM
volatile是虚拟机提供的轻量级的同步机制
- 保证可见性
- 不保证原子性
- 禁止指令重排
关于JMM的一些同步约定
- 线程解锁前,必须把共享变量刷立刻回主存
- 线程加锁前,必须读取主存中的最新值到内存中
- 加锁和解锁是同一把锁
线程 工作内存、主内存
8种操作
问题:程序不知道主内存的值已经被修改过了
Volatile
1.保证可见性
package tvolatile;
import java.util.concurrent.TimeUnit;
public class JMMDemo {
//不加volatile 程序就会死循环
//加volatile可以保证可见性
private volatile static int num=0;
public static void main(String[] args) {
new Thread(()->{//线程1 对主内存的变化不知道
while (num==0){
}
}).start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
num=1;
System.out.println(num);
}
}
2.不保证原子性
原子性:不可分割
线程A在执行任务的时候,不能被打扰,也不能被分割,要么同时成功,要么同时失败
package tvolatile;
//volatile不保证原子性
public class VDemo2 {
private volatile static int num=0;
public static void add(){
num++;
}
public static void main(String[] args) {
//理论上num的结果应该为2万
for (int i = 0; i < 20; i++) {
new Thread(()->{
for (int i1 = 0; i1 < 1000; i1++) {
add();
}
}).start();
}
while (Thread.activeCount()>2){//main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName()+" "+num);
}
}
使用原子类,解决原子问题
package tvolatile;
import java.util.concurrent.atomic.AtomicInteger;
//volatile不保证原子性
public class VDemo2 {
//原子类的Integer
private volatile static AtomicInteger num=new AtomicInteger();
public static void add(){
// num++;//不是原子性操作
num.getAndIncrement();//AtomicInteger+1 方法 CAS
}
public static void main(String[] args) {
//理论上num的结果应该为2万
for (int i = 0; i < 20; i++) {
new Thread(()->{
for (int i1 = 0; i1 < 1000; i1++) {
add();
}
}).start();
}
while (Thread.activeCount()>2){//main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName()+" "+num);
}
}
这些类的底层都直接和操作系统挂钩! 在内存中修改值!Unsafe类是一个很特殊的存在
指令重排:你写的程序,计算机并不是按照你写的那样去执行的
源代码—>编译器优化的重排–>指令并行也可能会重排–>内存系统也会重排–>执行
处理器在进行指令重排的时候,考虑:数据之间的依赖性
volatile可以避免指令重排
内存屏障,CPU指令,作用:
1.保证特定的操作的执行顺序!
2.可以保证某些变量的内存可见性(利用这些特性volatile实现了可见性)
volatile是可以保证可见性,不能保证原子性,由于内存屏障,可以保证避免指令重排的现象产生
单例模式
饿汉式、DCL懒汉式
饿汉式
package single;
/**
* 饿汉式
*/
public class Hungry {
//可能会浪费空间
private byte[] data1=new byte[1024*1024];
private byte[] data2=new byte[1024*1024];
private byte[] data3=new byte[1024*1024];
private byte[] data4=new byte[1024*1024];
private Hungry(){
}
private final static Hungry HUNGRY=new Hungry();
public static Hungry getInstance(){
return HUNGRY;
}
}
DCL懒汉式
package single;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
/**
* 懒汉式
*
*/
public class LazyMan {
private static boolean flag=false;
private LazyMan(){
synchronized (LazyMan.class){
if (flag==false){
flag=true;
}else {
throw new RuntimeException("不要试图用反射破坏异常");
}
}
System.out.println(Thread.currentThread().getName()+" ok");
}
private volatile static LazyMan lazyMan;
//双重检测锁模式的懒汉式单例DCL懒汉式
public static LazyMan getInstance() {
if (lazyMan==null){
synchronized (LazyMan.class){
if (lazyMan==null){
lazyMan=new LazyMan();//不是一个原子性操作
/**
* 1.分配内存空间
* 2.执行构造方法,初始化对象
* 3.把这个对象指向这个空间
*/
}
}
}
return lazyMan;
}
//多线程并发
/* public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
new Thread(()->{
LazyMan.getInstance();
}).start();
}
}*/
//反射
public static void main(String[] args) throws Exception {
//LazyMan instance = LazyMan.getInstance();
Field flag = LazyMan.class.getDeclaredField("flag");
flag.setAccessible(true);
Constructor<LazyMan> declaredConstructor = LazyMan.class.getDeclaredConstructor(null);
declaredConstructor.setAccessible(true);
LazyMan instance = declaredConstructor.newInstance();
flag.set(instance,false);
LazyMan instance2 = declaredConstructor.newInstance();
System.out.println(instance);
System.out.println( instance2);
}
}
静态内部类
package single;
//静态内部类
public class Holder {
private Holder(){
}
public static Holder getInstance(){
return InnerClass.HOLDER;
}
public static class InnerClass{
private static final Holder HOLDER=new Holder();
}
}
单例不安全,因为反射
枚举
package single;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
/**
*
*/
public enum EnumSingle {
INSTANCE;
public EnumSingle getInstance(){
return INSTANCE;
}
}
class Test{
public static void main(String[] args) throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException {
EnumSingle instance = EnumSingle.INSTANCE;
Constructor<EnumSingle> declaredConstructor = EnumSingle.class.getDeclaredConstructor(String.class,int.class);//用有参,不能用无参
declaredConstructor.setAccessible(true);
EnumSingle instance2= declaredConstructor.newInstance();
//java.lang.NoSuchMethodException: single.EnumSingle.<init>()
System.out.println(instance);
System.out.println(instance2);
}
}
深入理解CAS
package cas;
import jdk.nashorn.internal.ir.CallNode;
import java.util.concurrent.atomic.AtomicInteger;
public class CASDemo {
//CAS compareAndSet():比较并交换
public static void main(String[] args) {
AtomicInteger atomicInteger=new AtomicInteger(2020);
//如果我期望的值达到了,那么就更新,否则不更新
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
}
}
unsafe类:
CAS:比较当前工作内存中的值和主内存中的值,如果这个值是期望的,那么则执行操作!如果不是就一直循环。
缺点:1.循环浪费时间。2.一次性只能保证一个共享变量的原子性。3.ABA问题
ABA问题:
package cas;
import jdk.nashorn.internal.ir.CallNode;
import java.util.concurrent.atomic.AtomicInteger;
public class CASDemo {
//CAS compareAndSet():比较并交换
public static void main(String[] args) {
AtomicInteger atomicInteger=new AtomicInteger(2020);
//============捣乱的线程=============
//如果我期望的值达到了,那么就更新,否则不更新
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
System.out.println(atomicInteger.compareAndSet(2021, 2020));
System.out.println(atomicInteger.get());
//============期望的线程==============
System.out.println(atomicInteger.compareAndSet(2020, 6666));
System.out.println(atomicInteger.get());
}
}
原子引用
解决ABA问题,引入原子引用
带版本号的原子操作!
Integer使用了对象缓存机制,默认范围是-128~127,推荐使用静态工厂方法valueOf获取对象实例,而不是new,因为valueOf使用缓存,而new一定会创建新的对象分配新的内存空间
package cas;
import jdk.nashorn.internal.ir.CallNode;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicStampedReference;
public class CASDemo {
//AtomicStampedReference 注意,如果泛型是一个包装类,注意对象的引用问题
//正常在业务操作中,这里面比较的是一个对象
static AtomicStampedReference<Integer> atomicInteger = new AtomicStampedReference<>(1, 1);
//CAS compareAndSet():比较并交换
public static void main(String[] args) {
new Thread(()->{
int stamp = atomicInteger.getStamp();//获得版本号
System.out.println("A1=>"+stamp);
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(atomicInteger.compareAndSet(1, 2, atomicInteger.getStamp(), atomicInteger.getStamp() + 1));
System.out.println("A2=>"+atomicInteger.getStamp());
System.out.println(atomicInteger.compareAndSet(2, 1, atomicInteger.getStamp(), atomicInteger.getStamp() + 1));
System.out.println("A3=>"+atomicInteger.getStamp());
},"A").start();
//乐观锁的原理相同
new Thread(()->{
int stamp = atomicInteger.getStamp();//获得版本号
System.out.println("B1=>"+stamp);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(atomicInteger.compareAndSet(1, 6, stamp, stamp + 1));
System.out.println("B2=>"+atomicInteger.getStamp());
},"B").start();
}
}
可重入锁(递归锁)
synchronized
package lock;
public class Demo01 {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(()->{
phone.sms();
},"A").start();
new Thread(()->{
phone.sms();
},"B").start();
}
}
class Phone{
public synchronized void sms(){
System.out.println(Thread.currentThread().getName()+"->sms");
call();//这里有一把锁
}
public synchronized void call(){
System.out.println(Thread.currentThread().getName()+"->call");
}
}
lock
package lock;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class Demo02 {
public static void main(String[] args) {
Phone2 phone = new Phone2();
new Thread(()->{
phone.sms();
},"A").start();
new Thread(()->{
phone.sms();
},"B").start();
}
}
class Phone2{
Lock lock=new ReentrantLock();
public void sms(){
lock.lock();//lock锁,必须配对,否则就会死在里面
try {
System.out.println(Thread.currentThread().getName()+"->sms");
call();//这里有一把锁
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void call(){
lock.lock();
try {
System.out.println(Thread.currentThread().getName()+"->call");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
自旋锁(spinlock)
package lock;
import jdk.nashorn.internal.ir.CallNode;
import java.util.concurrent.atomic.AtomicReference;
/**
* 自旋锁
*/
public class SpinLock {
AtomicReference<Thread> atomicReference=new AtomicReference<>();
//加锁
public void myLock(){
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName()+"==> mylock");
//自旋锁
while (!atomicReference.compareAndSet(null,thread)){
}
}
//解锁
public void myUnLock(){
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName()+"==> myUnlock");
atomicReference.compareAndSet(thread,null);
}
}
测试
package lock;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
public class TsetSpinLock {
public static void main(String[] args) throws InterruptedException {
/* ReentrantLock reentrantLock = new ReentrantLock();
reentrantLock.lock();
reentrantLock.unlock();*/
//底层使用的自旋锁CAS
SpinLock lock=new SpinLock();
new Thread(()->{
lock.myLock();
try {
TimeUnit.SECONDS.sleep(5);
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.myUnLock();
}
},"T1").start();
TimeUnit.SECONDS.sleep(1);
new Thread(()->{
lock.myLock();
try {
TimeUnit.SECONDS.sleep(1);
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.myUnLock();
}
},"T2").start();
}
}
死锁
死锁测试
package lock;
import java.util.concurrent.TimeUnit;
public class DeadLockDemo {
public static void main(String[] args) {
String lockA="lockA";
String lockB="lockB";
new Thread(new MyThread(lockA,lockB),"T1").start();
new Thread(new MyThread(lockB,lockA),"T2").start();
}
}
class MyThread implements Runnable{
private String lockA;
private String lockB;
public MyThread(String lockA, String lockB) {
this.lockA = lockA;
this.lockB = lockB;
}
@Override
public void run() {
synchronized (lockA){
System.out.println(Thread.currentThread().getName()+"lock:"+lockA+"=>get"+lockB);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lockB){
System.out.println(Thread.currentThread().getName()+"lock:"+lockB+"=>get"+lockA);
}
}
}
}
解决问题:
1.使用 jps -l 定位进程号
2.使用 jstack 进程号找到死锁问题