Elasticsearch 的一些关键概念

我更喜欢把 Elasticsearch 作为一种 nosql 去理解,它的一些开发概念和 MongoDB 以及 Redis 没有太大的区别,不过了解 Elasticsearch 中的一些核心概念对于你后续使用它仍然有非常大的帮助。

1. 近实时查询(Near RealTime)

Elasticsearch 是一个能提供近实时查询的搜索服务引擎,这意味着从索引文档到真正可搜索之间会有一个轻微的延迟(大概在一秒内)。

2. 节点和集群

节点(node)是一个运行着的 Elasticsearch 实例,你可以认为是单个服务器。集群(cluster)是一个或多个节点的集合,他们协同工作,共享数据并提供故障转移和扩展功能。集群由唯一名称标识,如 .NET Core 中的环境名称,推荐在不同的环境中使用诸如 Development,Production 之类的名称部署开发。其实节点和集群就是 web 开发中的常见概念而已,大家注意区分即可。

3. 文档

文档是可索引信息的基本单元,以JSON表示。你可以用其来定义单个产品信息或是员工信息。我们可以把文档理解为数据库文档中的行列数据。在索引/类型中,您可以存储任意数量的文档。文档有几个共同不可缺的属性,分别为 _index, _type, _id, 针对特定一个或一类文档进行操作时,必须指定这些属性。
最后要提醒大家的是,虽然文档物理上是驻留在索引中,但实际上文档必须索引/分配给索引中的类型。

4. 索引

索引是具有某些相似特征的文档的集合,它和数据库中的索引概念并不十分相同。我们可以把索引理解为数据库文档中的数据库。事实上,我们的数据被存储和索引在分片(shards)中,索引只是一个把一个或多个分片分组在一起的逻辑空间。然而,这只是一些内部细节——我们的程序完全不用关心分片。

5. 类型

在索引中,我们可以定义一个或多个类型。类型是索引的逻辑类别/分区,其语义完全由开发者决定。通常,为具有一组公共字段的文档定义类型。例如,假设开发者运行博客平台并将所有数据存储在一个索引中。在此索引中,我们可以为用户数据定义类型,为博客数据定义另一种类型,并为注释数据定义另一种类型。我们可以把索引理解成数据库文档中的表。

以下是 es 和 关系型数据库的简单类比
Relational DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices(索引簇)-> Types -> Documents -> Fields

6. 分片和复制

理论上,索引可以存储尽可能多的数据,但是这种情况下性能往往不太乐观,或者常见的磁盘容量限制也不能允许。所以 Elasticsearch 提供了类似于 MongoDB 中的分片功能,该功能能将索引细分为多个分片。每个分片本身是一个功能完全和独立的“索引”,可以托管在集群中的任何节点上。

同样的,有分片技术来处理数据量增长快速的问题,就意味着需要复制技术来应对这种过程中(其实不只是该过程,任何情况下都应该有安全意识)数据安全的问题。Elasticsearch 允许您将索引分片的一个或多个副本转换为所谓的副本分片。复制技术为我们提供了数据的高可用性和搜索吞吐的扩展性。不过需要注意的是,副本分片从不分配在与从其复制的原始/主分片相同的节点上。

总而言之,每个索引可以拆分为多个分片。索引也可以复制为零(意味着没有副本)或更多次。一旦复制,每个索引将具有主分片(从索引复制的原始分片)和副本分片(主分片的副本)。开发者可以在创建索引时就为每个索引定义分片和副本的数量。创建索引后,可以随时动态更改副本数,但不能在此过程后随即更改分片数。

上一篇:.NET 云原生架构师训练营(ASP .NET Core 整体概念推演)--学习笔记


下一篇:hi3531 SDK 编译 uboot, 改动PHY地址, 改动 uboot 參数 .