1.常用得数据序列化类型
2.MapReduce编程规范
1)Mapper阶段
(1)用户自定义的Mapper要继承自己的父类
(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)
(3)Mapper中的业务逻辑写在map()方法中
(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)
(5)map()方法(MapTask进程)对每一个<K,V>调用一次
2)Reducer阶段
(1)用户自定义的Reducer要继承自己的父类
(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV
(3)Reducer的业务逻辑写在reduce()方法中
(4)ReduceTask进程对每一组相同k的<k,v>组调用一次reduce()方法
3)Driver阶段
相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是
封装了MapReduce程序相关运行参数的job对象
3.需求:统计单词出现的次数
(1)引入依赖
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
</dependencies>
(2)自定义Mapper类
package zjc.hadoop;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
*统计文件中单词出现的次数
* */
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
Text k=new Text();
IntWritable v=new IntWritable();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line=value.toString();
String[] words = line.split(" ");
for(String word:words){
k.set(word);
context.write(k,v);
}
}
}
(3)自定义Reducer类
package zjc.hadoop;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
int sum;
IntWritable v = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
sum=0;
for (IntWritable count:values) {
sum += count.get();
}
v.set(sum);
context.write(key,v);
}
}
(4)自定义Driver类
package zjc.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1 获取配置信息以及获取 job 对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2 关联本 Driver 程序的 jar
job.setJarByClass(WordCountDriver.class);
// 3 关联 Mapper 和 Reducer 的 jar
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 设置 Mapper 输出的 kv 类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置最终输出 kv 类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7 提交 job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
4.自定义Bean对象实现序列化接口
(1)必须实现 Writable 接口
(2)构造函数
(3)重写序列化write与反序列化readFields的方法
(4)toString方法
5.需求:统计每一个手机号耗费的总上行流量、总下行流量、总流量