汉诺塔应用到了最简单的迭代,最基本的代码如下:
def hannoi(n, a, c, b, step): if n != 0: hannoi(n - 1, a, b, c, step) print("Moving form %s to %s" % (a, b)) hannoi(n - 1, c, a, b, step) hannoi(5, "A", "B", "C")
然后看到有大佬放出了动画演示的demo:https://www.cnblogs.com/ReganWhite/p/10595719.html
进一步我稍作修改,给盘子添加了五个颜色,并统计运行的步数:
# coding: utf-8 import turtle class Stack: def __init__(self): self.items = [] def isEmpty(self): return len(self.items) == 0 def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): if not self.isEmpty(): return self.items[len(self.items) - 1] def size(self): return len(self.items) def drawpole_3(): # 画出汉诺塔的poles t = turtle.Turtle() t.hideturtle() def drawpole_1(k): t.up() t.pensize(10) t.speed(100) t.goto(400 * (k - 1), 100) t.down() t.goto(400 * (k - 1), -100) t.goto(400 * (k - 1) - 20, -100) t.goto(400 * (k - 1) + 20, -100) drawpole_1(0) # 画出汉诺塔的poles[0] drawpole_1(1) # 画出汉诺塔的poles[1] drawpole_1(2) # 画出汉诺塔的poles[2] def creat_plates(n): # 制造n个盘子 color_list = ("black", "red", "green", "blue", "yellow") plates = [turtle.Turtle() for i in range(n)] for i in range(n): plates[i].up() plates[i].hideturtle() plates[i].shape("square") plates[i].shapesize(1, 8 - i) plates[i].color(color_list[(i % 5)]) plates[i].goto(-400, -90 + 20 * i) plates[i].showturtle() return plates def pole_stack(): # 制造poles的栈 poles = [Stack() for i in range(3)] return poles def moveDisk(plates, poles, fp, tp): # 把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp] mov = poles[fp].peek() plates[mov].goto((fp - 1) * 400, 150) plates[mov].goto((tp - 1) * 400, 150) l = poles[tp].size() # 确定移动到底部的高度(恰好放在原来最上面的盘子上面) plates[mov].goto((tp - 1) * 400, -90 + 20 * l) def moveTower(plates, poles, height, fromPole, toPole, withPole): # 递归放盘子 global step if height >= 1: moveTower(plates, poles, height - 1, fromPole, withPole, toPole) moveDisk(plates, poles, fromPole, toPole) step = step + 1 poles[toPole].push(poles[fromPole].pop()) moveTower(plates, poles, height - 1, withPole, toPole, fromPole) return step my_screen = turtle.Screen() drawpole_3() n = int(input("请输入汉诺塔的层数并回车:\n")) plates = creat_plates(n) poles = pole_stack() step = 0 # 记录移动总步数 for i in range(n): poles[0].push(i) steps = moveTower(plates, poles, n, 0, 2, 1) my_screen.exitonclick() print("该过程共移动 %s 步" % steps)
由于采用了上面大佬的代码,最多限制8个盘子。