【BZOJ 4031】 4031: [HEOI2015]小Z的房间 (Matrix-Tree Theorem)

4031: [HEOI2015]小Z的房间

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1089  Solved: 533

Description

你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。

你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希望统计一共有多少种可行的方案。

Input

第一行两个数分别表示n和m。

接下来n行,每行m个字符,每个字符都会是’.’或者’*’,其中’.’代表房间,’*’代表柱子。

Output

一行一个整数,表示合法的方案数 Mod 10^9

Sample Input

3 3
...
...
.*.

Sample Output

15

HINT

对于前100%的数据,n,m<=9

Source

【分析】

  也是裸的矩阵树定理。

  这道题的模数呢就要我们用到那个O(n^3logn)的不用求逆元的方法啦。

  

具体看代码:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Mod 1000000000
#define LL long long int a[][],num[][];
char s[][];
int bx[]={,,,-,},
by[]={,,,,-}; int gauss(int n)
{
int ans=;
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
while(a[j][i])
{
int nw=a[i][i]/a[j][i];
for(int k=i;k<=n;k++)
{
a[i][k]-=1LL*nw*a[j][k]%Mod;
a[i][k]%=Mod;
swap(a[i][k],a[j][k]);
}
ans=Mod-ans;
}
}
if(!a[i][i]) return ;
ans=1LL*ans*a[i][i]%Mod;
}
ans=(ans%Mod+Mod)%Mod;
return ans;
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%s",s[i]+);
int cnt=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) if(s[i][j]=='.') num[i][j]=++cnt;
memset(a,,sizeof(a));
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) if(s[i][j]=='.')
{
for(int k=;k<=;k++)
{
int nx=i+bx[k],ny=j+by[k];
if(nx<||nx>n||ny<||ny>m||s[nx][ny]=='*') continue;
a[num[i][j]][num[nx][ny]]--;
a[num[i][j]][num[i][j]]++;
}
}
printf("%d\n",gauss(cnt-));
return ;
}

2017-04-16 21:41:20

上一篇:[置顶]生鲜配送管理系统_升鲜宝V2.0 销售订单汇总_采购任务分配功能_操作说明


下一篇:生鲜配送管理系统_升鲜宝V2.0 价格组功能 操作说明_15382353715