tf.nn.conv2d

import numpy as np
filter_primes = np.array([2., 3., 5., 7., 11., 13.], dtype=np.float32)
x = tf.constant(np.arange(1, 13+1, dtype=np.float32).reshape([1, 1, 13, 1]))
filters = tf.constant(filter_primes.reshape(1, 6, 1, 1))

valid_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='VALID')
same_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='SAME')

with tf.Session() as sess:
       print("VALID:\n", valid_conv.eval())
       print("SAME:\n", same_conv.eval())

上一篇:卷积神经网络(CNN)张量(图像)的尺寸和参数计算(深度学习)


下一篇:CNN基础三:预训练模型的微调