Hadoop基础-MapReduce的数据倾斜解决方案

                     Hadoop基础-MapReduce的数据倾斜解决方案

                                              作者:尹正杰

版权声明:原创作品,谢绝转载!否则将追究法律责任。

一.数据倾斜简介

1>.什么是数据倾斜

  答:大量数据涌入到某一节点,导致此节点负载过重,此时就产生了数据倾斜。

2>.处理数据倾斜的两种方案

  第一:重新设计key;

  第二:设计随机分区;

二.模拟数据倾斜

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

screw.txt 文件内容

1>.App端代码

 /*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.srew; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class ScrewApp {
public static void main(String[] args) throws Exception {
//实例化一个Configuration,它会自动去加载本地的core-site.xml配置文件的fs.defaultFS属性。(该文件放在项目的resources目录即可。)
Configuration conf = new Configuration();
//将hdfs写入的路径定义在本地,需要修改默认为文件系统,这样就可以覆盖到之前在core-site.xml配置文件读取到的数据。
conf.set("fs.defaultFS","file:///");
//代码的入口点,初始化HDFS文件系统,此时我们需要把读取到的fs.defaultFS属性传给fs对象。
FileSystem fs = FileSystem.get(conf);
//创建一个任务对象job,别忘记把conf穿进去哟!
Job job = Job.getInstance(conf);
//给任务起个名字
job.setJobName("WordCount");
//指定main函数所在的类,也就是当前所在的类名
job.setJarByClass(ScrewApp.class);
//指定map的类名,这里指定咱们自定义的map程序即可
job.setMapperClass(ScrewMapper.class);
//指定reduce的类名,这里指定咱们自定义的reduce程序即可
job.setReducerClass(ScrewReduce.class);
//设置输出key的数据类型
job.setOutputKeyClass(Text.class);
//设置输出value的数据类型
job.setOutputValueClass(IntWritable.class);
Path localPath = new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\out");
if (fs.exists(localPath)){
fs.delete(localPath,true);
}
//设置输入路径,需要传递两个参数,即任务对象(job)以及输入路径
FileInputFormat.addInputPath(job,new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\screw.txt"));
//设置输出路径,需要传递两个参数,即任务对象(job)以及输出路径
FileOutputFormat.setOutputPath(job,localPath);
//设置Reduce的个数为2.
job.setNumReduceTasks();
//等待任务执行结束,将里面的值设置为true。
job.waitForCompletion(true);
}
}

ScrewApp.java 文件内容

2>.Reduce端代码

 /*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.srew; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class ScrewReduce extends Reducer<Text,IntWritable,Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int count = ;
for (IntWritable value : values) {
count += value.get();
}
context.write(key,new IntWritable(count));
}
}

ScrewReduce.java 文件内容

3>.Mapper端代码

 /*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.srew; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class ScrewMapper extends Mapper<LongWritable,Text,Text,IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString(); String[] arr = line.split(" "); for (String word : arr) {
context.write(new Text(word),new IntWritable());
}
}
}

ScrewMapper.java 文件内容

  执行以上代码,查看数据如下:

Hadoop基础-MapReduce的数据倾斜解决方案

三.解决数据倾斜方案之重新设计key

1>.具体代码如下

/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.srew; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.util.Random; public class ScrewMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
//定义一个reduce变量
int reduces;
//定义一个随机数生成器变量
Random r;
/**
* setup方法是用于初始化值
*/
@Override
protected void setup(Context context) throws IOException, InterruptedException {
//通过context.getNumReduceTasks()方法获取到用户配置的reduce个数。
reduces = context.getNumReduceTasks();
//生成一个随机数生成器
r = new Random();
} @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] arr = line.split(" ");
for (String word : arr) {
//从reducs的范围中获取一个int类型的随机数赋值给randVal
int randVal = r.nextInt(reduces);
//重新定义key
String newWord = word+"_"+ randVal;
//将自定义的key赋初始值为1发给reduce端
context.write(new Text(newWord), new IntWritable(1));
}
}
}

ScrewMapper.java 文件内容

 package cn.org.yinzhengjie.srew;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class ScrewMapper2 extends Mapper<LongWritable,Text,Text,IntWritable> { //处理的数据类似于“1_1 677”
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
//
String[] arr = line.split("\t"); //newKey
String newKey = arr[0].split("_")[0]; //newVAl
int newVal = Integer.parseInt(arr[1]); context.write(new Text(newKey), new IntWritable(newVal)); }
}

ScrewMapper2.java 文件内容

 /*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.srew; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class ScrewReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int count = 0;
for (IntWritable value : values) {
count += value.get();
}
context.write(key,new IntWritable(count));
}
}

ScrewReducer.java 文件内容

 /*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.srew; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class ScrewApp {
public static void main(String[] args) throws Exception {
//实例化一个Configuration,它会自动去加载本地的core-site.xml配置文件的fs.defaultFS属性。(该文件放在项目的resources目录即可。)
Configuration conf = new Configuration();
//将hdfs写入的路径定义在本地,需要修改默认为文件系统,这样就可以覆盖到之前在core-site.xml配置文件读取到的数据。
conf.set("fs.defaultFS","file:///");
//代码的入口点,初始化HDFS文件系统,此时我们需要把读取到的fs.defaultFS属性传给fs对象。
FileSystem fs = FileSystem.get(conf);
//创建一个任务对象job,别忘记把conf穿进去哟!
Job job = Job.getInstance(conf);
//给任务起个名字
job.setJobName("WordCount");
//指定main函数所在的类,也就是当前所在的类名
job.setJarByClass(ScrewApp.class);
//指定map的类名,这里指定咱们自定义的map程序即可
job.setMapperClass(ScrewMapper.class);
//指定reduce的类名,这里指定咱们自定义的reduce程序即可
job.setReducerClass(ScrewReducer.class);
//设置输出key的数据类型
job.setOutputKeyClass(Text.class);
//设置输出value的数据类型
job.setOutputValueClass(IntWritable.class);
Path localPath = new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\out");
if (fs.exists(localPath)){
fs.delete(localPath,true);
}
//设置输入路径,需要传递两个参数,即任务对象(job)以及输入路径
FileInputFormat.addInputPath(job,new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\screw.txt"));
//设置输出路径,需要传递两个参数,即任务对象(job)以及输出路径
FileOutputFormat.setOutputPath(job,localPath);
//设置Reduce的个数为2.
job.setNumReduceTasks(2);
//等待任务执行结束,将里面的值设置为true。
if (job.waitForCompletion(true)) {
//当第一个MapReduce结束之后,我们这里又启动了一个新的MapReduce,逻辑和上面类似。
Job job2 = Job.getInstance(conf);
job2.setJobName("Wordcount2");
job2.setJarByClass(ScrewApp.class);
job2.setMapperClass(ScrewMapper2.class);
job2.setReducerClass(ScrewReducer.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(IntWritable.class);
Path p2 = new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\out2");
if (fs.exists(p2)) {
fs.delete(p2, true);
}
FileInputFormat.addInputPath(job2, localPath);
FileOutputFormat.setOutputPath(job2, p2);
//我们将第一个MapReduce的2个reducer的处理结果放在新的一个MapReduce中只启用一个MapReduce。
job2.setNumReduceTasks(1);
job2.waitForCompletion(true);
}
}
}

ScrewApp.java 文件内容

2>.检测实验结果

  “D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\out” 目录内容如下:

Hadoop基础-MapReduce的数据倾斜解决方案

  “D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\out2” 目录内容如下:

Hadoop基础-MapReduce的数据倾斜解决方案

四.解决数据倾斜方案之使用随机分区

1>.具体代码如下

 /*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.screwpartition; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class Screw2Mapper extends Mapper<LongWritable,Text,Text,IntWritable> { @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] arr = line.split(" "); for(String word : arr){
context.write(new Text(word), new IntWritable(1)); } }
}

Screw2Mapper.java 文件内容

 /*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.screwpartition; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner; import java.util.Random; public class Screw2Partition extends Partitioner<Text, IntWritable> {
@Override
public int getPartition(Text text, IntWritable intWritable, int numPartitions) {
Random r = new Random();
//返回的是分区的随机的一个ID
return r.nextInt(numPartitions);
}
}

Screw2Partition.java 文件内容

 /*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.screwpartition; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class Screw2Reducer extends Reducer<Text,IntWritable,Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for(IntWritable value : values){
sum += value.get();
}
context.write(key,new IntWritable(sum));
}
}

Screw2Reducer.java 文件内容

 /*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.screwpartition; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Screw2App {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "file:///");
FileSystem fs = FileSystem.get(conf);
Job job = Job.getInstance(conf);
job.setJobName("Wordcount");
job.setJarByClass(Screw2App.class);
job.setMapperClass(Screw2Mapper.class);
job.setReducerClass(Screw2Reducer.class);
job.setPartitionerClass(Screw2Partition.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path p = new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\out");
if (fs.exists(p)) {
fs.delete(p, true);
}
FileInputFormat.addInputPath(job, new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\screw.txt"));
FileOutputFormat.setOutputPath(job, p);
job.setNumReduceTasks(2);
job.waitForCompletion(true);
}
}

Screw2App.java 文件内容

2>.检测实验结果

  “D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\out” 目录内容如下:

Hadoop基础-MapReduce的数据倾斜解决方案

   “D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\MapReduce\\out2” 目录内容如下:

上一篇:实验三:分别用for,while;do-while循坏语句以及递归的方法计算n!,并输出算式。


下一篇:VS2010 EXCEL2010 表格操作的编程实现