p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545; min-height: 14.0px }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC Semibold"; color: #454545 }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #e4af0a }
li.li1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 }
span.s1 { font: 12.0px "Helvetica Neue" }
span.s2 { font: 12.0px ".PingFang SC" }
span.s3 { font: 12.0px ".PingFang SC"; color: #454545 }
span.s4 { font: 12.0px "Helvetica Neue"; color: #e4af0a }
span.s5 { font: 10.0px Menlo }
span.s6 { color: #e4af0a }
span.Apple-tab-span { white-space: pre }
ol.ol1 { list-style-type: decimal }
ul.ul1 { list-style-type: disc }
深度学习框架-caffe安装
[Mac OSX 10.12]
【参考资源】
1.英文原文:(使用GPU)
[http://hoondy.com/2015/04/03/how-to-install-caffe-on-mac-os-x-10-10-for-dummies-like-me/]
2.基于1的两篇中文博客:
[http://ylzhao.blogspot.kr/2015/04/mac-os-x-1010caffe.html]
[http://www.jianshu.com/p/8795b882ea67]
3.无GPU,仅使用CPU的情况下的配置
[http://blog.csdn.net/u014696921/article/details/52156552]
[http://www.phperz.com/article/16/1006/298567.html]
—————————————————————————————
【我的电脑配置】
系统:MacBook Pro OS X Sierra 版本10.12.2
CPU:2.7 GHz Intel Core i5
显卡:Intel Iris Graphics 6100 1536 MB
*如果显卡是NVIDIA的,可以使用GPU,需要安装cuda,cuda driver和cuDNN GPU库,并且在Makefile配置成使用GPU。参考资源中【1】【2】是有NVIDIA显卡的所以安装了cuda,cuda driver和cuDNN GPU库,最后的caffe的Makefile.config文件中配置成使用GPU。
*由于我电脑配置的不是NVIDIA显卡,所以不能使用cuda加速了,所以只能安装个CPU模式。可以忽略安装cuda,cuda driver和cuDNN的安装步骤,最后的caffe的Makefile.config文件中配置成仅使用CPU。
【详细安装步骤】
- Homebrew
- 根据 http://brew.sh/ 上面的说明安装Homebrew包管理
- Anaconda Python
- 从https://store.continuum.io/cshop/anaconda/下载和安装Anaconda Python包(其中包括Caffe框架用到的hdf5)
- export PATH=~/anaconda/bin:$PATH
- BLAS - Intel MKL
- 由于Mac OS X操作系统自带的BLAS库存在一些不稳定的问题,因此我选择安装Intel MKL库。如果你是在校大学生,可以使用学校邮箱从https://software.intel.com/en-us/qualify-for-free-software/student页面申请Intel Parallel Studio XE 2017安装包(后面不要忘记在Makefile.config中设置BLAS:=MKL)
- 确保在安装Intel Parallel XE时选择每一个组件(因为缺省情况下不会安装MKL组件)
- cd /opt/intel/mkl/lib/
- sudo ln -s . /opt/intel/mkl/lib/intel64(因为在编译Caffe时Caffe会从MKL的intel64目录中去搜索mkl的库,但是在安装MKL后,MKL的lib目录下并没有intel64这个目录,所以需要建立一个intel64目录到lib目录的软链接)
- 通过Homebrew安装依赖项
brew edit opencv 在自动打开的vim编辑器中将下面两行
args << "-DPYTHON#{py_ver}_LIBRARY=#{py_lib}/libpython2.7.#{dylib}"
args << "-DPYTHON#{py_ver}_INCLUDE_DIR=#{py_prefix}/include/python2.7"
替换为
args << "-DPYTHON_LIBRARY=#{py_prefix}/lib/libpython2.7.dylib"
args << "-DPYTHON_INCLUDE_DIR=#{py_prefix}/include/python2.7"
***vim中具体操作是:
i 从当前光标处进入插入模式,开始修改内容,esc 退出插入模式,:wq 保存修改并退出。
brew install --fresh -vd snappy leveldb gflags glog szip lmdb homebrew/science/opencv
brew install --build-from-source --with-python --fresh -vd protobuf
brew install --build-from-source --fresh -vd boost boost-python
- 从Github上面克隆Caffe的代码
git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config
- 配置Makefile.config
- 设置BLAS := mkl(BLAS (使用intel mkl还是OpenBLAS))
- 取消USE_CUDNN := 1注释
- 检查并设置Python路径
*** 首先修改文件权限:chmod g+w Makefile.config
***打开文件进行修改:sudo vim Makefile.config ;按“i”键开始修改,修改 :将# CPU_ONLY = 1前面的#去掉( 由于我没有NVIDIA的显卡,就没有安装CUDA,因此需要打开这个选项) 并按“tab”键,(默认从tab处执行),设置BLAS := mkl,检查并设置python路径,修改结束后按esc键,键入“:wq”保存并退出;
***以下是我的Makefile.config中的所有配置:(可以先在命令行中验证一下自己的文件路径,一定要根据自己路径进行设置!)
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := mkl
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda
PYTHON_INCLUDE := $(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
$(ANACONDA_HOME)/include \
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
- 设置环境变量
- export DYLD_FALLBACK_LIBRARY_PATH=/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/composer_xe_2015.2.132/compiler/lib:/opt/intel/composer_xe_2015.2.132/mkl/lib
***必须手动查看自己的文件路径!根据自己的路径添加环境变量,我的路径如下:
export DYLD_FALLBACK_LIBRARY_PATH=$HOME/caffe/.build_release/lib:/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/compiler/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/mkl/lib/
- 编译Caffe
- make clean
- make all
- make test
- make runtest
- make pycaffe
- make distribute
***make all的时候注意库的链接路径,make runtest注意,会有这样的一个问题DYLD_FALLBACK_LIBRARY_PATH is cleared by the new System Integrity Protection ,所以要把System Integrity Protection禁止掉:具体操作:电脑重新开机同时按住command+r,进入恢复模式,然后打开终端,输入csrutil disable,就关闭SIP了,重新启动电脑即可。