题意:请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
卷积 (f x g)(n)=∑{f(i)*g(n-i):i=...n} 多项式乘法就是一个系数向量的卷积 可以用FFT快速计算卷积 遇到和不是定值的情况可以反转一个向量 如本题反转a向量后 c[k]=∑(a[n-i-]*b[i-k]) k<=i<=n- 更换求和指标 i=i-k c[k]=∑(a[n-i-k-]*b[i]) <=i<=n-k- 把-k-1消去,令t=n-k- c[n-t-]=∑(a[t-i]*b[i]) <=i<=t 这样就是标准的卷积形式啦
以前的推导
[update 2017-03-30]
重做了一下
反转一个向量,变成和为常数的形式
$ c_k = \sum\limits_{i=k}^{n-1} a_i b_{n-1-i+k} = d_{n+k-1} $
这样计算d是没问题的,因为a和b只有$0...n-1$非0,其他都是0
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=(<<)+, INF=1e9;
const double PI=acos(-);
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} struct meow{
double x, y;
meow(double a=, double b=):x(a), y(b){}
};
meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
meow operator *(meow a, meow b) {return meow(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd; struct FFT{
int n, rev[N];
void ini(int lim) {
n=; int k=;
while(n<lim) n<<=, k++;
for(int i=; i<n; i++) {
int t=;
for(int j=; j<k; j++) if(i&(<<j)) t |= (<<(k--j));
rev[i]=t;
}
}
void dft(cd *a, int flag) {
for(int i=; i<n; i++) if(i<rev[i]) swap(a[i], a[rev[i]]);
for(int l=; l<=n; l<<=) {
int m=l>>;
cd wn = meow(cos(*PI/l), flag*sin(*PI/l));
for(cd *p=a; p!=a+n; p+=l) {
cd w(, );
for(int k=; k<m; k++) {
cd t = w*p[k+m];
p[k+m] = p[k] - t;
p[k] = p[k] + t;
w=w*wn;
}
}
}
if(flag==-) for(int i=; i<n; i++) a[i].x/=n;
}
void mul(cd *a, cd *b, int lim) {
ini(lim);
dft(a, ); dft(b, );
for(int i=; i<n; i++) a[i]=a[i]*b[i];
dft(a, -);
}
}f; int n;
cd a[N], b[N];
int main() {
freopen("in","r",stdin);
n=read();
for(int i=; i<n; i++) a[i].x=read(), b[n--i].x=read();
f.mul(a, b, n+n-);
for(int i=n-; i<*n-; i++) printf("%d\n", int(a[i].x+0.5));
}