ReentrantLock lock = new ReentrantLock();
lock.lock(); // 默认为非公平锁
final void lock() {
acquire(1);
}
// AbstractQueuedSynchronizer里面的方法
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
// 1.1 tryAcquire 具体子类实现 ReentrantLock.NonfairSync
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
// 先尝试去获取一次锁。【CHL队列里面可能还有其他线程等待,这里可以体现出非公平性。】
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) { // 若状态刚好为0,则尝试获取锁。
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) { // 若当前线程持有锁,则直接状态值+1
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
// 1.2 新增一个node 加入到尾节点,并将该节点返回
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) { // 若当前队列不为空
node.prev = pred; // 新增节点的前置节点 指向尾节点
if (compareAndSetTail(pred, node)) { // 比较替换的方式将尾节点指向当前新建的节点
pred.next = node; // 上一个尾节点的下个节点指向当前新建的节点
return node; // 返回当前节点
}
}
enq(node); // 若尾节点为空,即当前队列为空
return node;
}
// 队列为空时,新建一个节点,并将头结点尾节点指向新建节点。并将当前节点设置为尾节点,返回当前接的前置节点
private Node enq(final Node node) {
// 开始自旋
for (;;) {
// 第一次尾节点为空
Node t = tail;
if (t == null) { // Must initialize
// 头结点 = 尾节点 = 新建一个节点
if (compareAndSetHead(new Node()))
tail = head;
} else {
// 当尾节点不为空时,当前节点的前置节点指向尾节点
node.prev = t;
// 比较并替换当前节点为尾节点,若替换成功,则上一个尾节点的下一个节点指向最新尾节点(即为当前节点)。并返回当前节点的前置节点
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
// 1.3 节点增加到等待队列中
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
// 自旋
for (;;) {
final Node p = node.predecessor(); // 获取当前节点的前置节点
if (p == head && tryAcquire(arg)) { // 若前置节点为头节点,尝试再次获取锁,若获取成功,则将当前节点设置为头节点
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL) // 若前置节点状态值=-1 则表示,可以直接阻塞
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) { // 若前置状态的值 > 0 ,则表示有取消的节点,依次向前找到没有取消的节点,并将改节点的next节点指向当前节点
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
// 将节点状态设置为-1
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
// LockSupport方法阻塞当前线程。
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}