梯度下降简介

目录

Outline

  • What's Gradient

  • What does it mean

  • How to Search

  • AutoGrad

What's Gradient

  • 导数,derivative,抽象表达

  • 偏微分,partial derivative,沿着某个具体的轴运动

  • 梯度,gradient,向量

f=(fx1;fx2;;fxn)

梯度下降简介

What does it mean?

  • 箭头的方向表示梯度的方向
  • 箭头模的大小表示梯度增大的速率

梯度下降简介

How to search

  • 沿着梯度下降的反方向搜索

梯度下降简介

For instance

θt+1=θtαtf(θt)

梯度下降简介

梯度下降简介

AutoGrad

  • With Tf.GradientTape() as tape:

    • Build computation graph
    • loss=fθ(x)
  • [w_grad] = tape.gradient(loss,[w])

import tensorflow as tf
w = tf.constant(1.)
x = tf.constant(2.)
y = x * w
with tf.GradientTape() as tape:
    tape.watch([w])
    y2 = x * w
grad1 = tape.gradient(y, [w])
grad1
[None]
with tf.GradientTape() as tape:
    tape.watch([w])
    y2 = x * w
grad2 = tape.gradient(y2, [w])
grad2
[<tf.Tensor: id=30, shape=(), dtype=float32, numpy=2.0>]
try:
    grad2 = tape.gradient(y2, [w])
except Exception as e:
    print(e)
GradientTape.gradient can only be called once on non-persistent tapes.
  • 永久保存grad
with tf.GradientTape(persistent=True) as tape:
    tape.watch([w])
    y2 = x * w
grad2 = tape.gradient(y2, [w])
grad2
[<tf.Tensor: id=35, shape=(), dtype=float32, numpy=2.0>]
grad2 = tape.gradient(y2, [w])
grad2
[<tf.Tensor: id=39, shape=(), dtype=float32, numpy=2.0>]

2nd-order

  • y = xw + b

  • yw=x

  • 2yw2=yw=Xw=None

with tf.GradientTape() as t1:
    with tf.GradientTape() as t2:
        y = x * w + b
    dy_dw, dy_db = t2.gradient(y, [w, b])

d2y_dw2 = t1.gradient(dy_dw, w)

上一篇:mysql定时任务执行FLUSH HOSTS设置


下一篇:Codeforces Global Round B Tape