Description
Input
Output
Sample Input
3 2
1 2
1 3
5 4
1 2
2 3
2 4
1 5
Sample Output
2
8
对于第一组样例合法加边的方案有 {}, {(2,3)},共 2 种。
正解:仙人掌$DP$
这题好难啊。。我看题解都看了好久才看懂。。
先给两个博客:http://blog.csdn.net/akak__ii/article/details/65935711
ljh2000:http://www.cnblogs.com/ljh2000-jump/p/6613829.html
首先特判不是仙人掌的情况,只要判每个点到达根的路径是否大于$2$条就行了。
然后我们可以先把环拆掉,也就是把环边和对应的那个点与它父亲断开,因为环是不会对答案造成贡献的。然后这个仙人掌就会变成一个森林。于是我们就成功地把仙人掌$DP$变成了树形$DP$。我们单独考虑每棵树的答案,乘法原理一下就好。
然后就是对于每棵树统计答案了。
对于一个点$x$,我们设$f[x]$表示$x$这棵子树连边形成仙人掌的方案数。我们发现,可以分为两种情况:
1,$x$这棵子树一定不与祖先连边,这个是根的情况。
2,$x$这棵子树可能与祖先连边,这个是除了根以外其他点的情况。
对于第1种情况,我们把$x$所有的儿子$f[v]$都乘起来,并且我们计算一下$x$的儿子互相连边的情况,再乘起来就行了。
对于$x$的儿子互相连边的情况,我们可以找到一个规律。我们设$g[i]$表示$i$个儿子互相连边的合法方案数,那么$g[i]=g[i-1]+(i-1)*g[i-2]$。
这是怎么来的呢?我们考虑一下,如果第$i$个点不与其他点连边,那么方案数就是$g[i-1]$,否则,第$i$个点与第$j$个点连边,那么第$j$个点肯定不能与其他点连边,所以方案数是$g[i-2]$,总共有$i-1$种情况,所以$g[i]=g[i-1]+(i-1)*g[i-2]$。那么我们设$x$有$tot$个儿子,于是$f[x]=\prod f[v]*g[tot]$。
那么现在我们只要考虑第二种情况了。其实仔细想想,就是$x$的所有儿子$f[v]$相乘,再乘上$g[tot+1]$就行了。因为这就是$tot+1$个点互相连边的情况。于是$f[x]=\prod f[v]*g[tot+1]$。
于是这道题我们就完美地解决了。
//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define rhl (998244353)
#define inf (1<<30)
#define M (1000010)
#define N (500010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ int nt,to; }G[*M];
struct node{ int i,d; }a[N]; int head[N],fa[N],dfn[N],dep[N],lu[N],n,m,cnt;
ll f[N],g[N],ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG int from,RG int to){
G[++cnt]=(edge){head[from],to},head[from]=cnt; return;
} il int cmpd(const node &a,const node &b){ return a.d<b.d; } il void pre(){ //预处理g数组
g[]=g[]=;
for (RG int i=;i<=;++i) g[i]=(g[i-]+(i-)*g[i-])%rhl;
return;
} il void dfs(RG int x,RG int p){
fa[x]=p,dfn[x]=++cnt,dep[x]=dep[p]+;
for (RG int i=head[x],v;i;i=G[i].nt){
v=G[i].to; if (dfn[v]) continue;
dfs(v,x);
}
return;
} il void dp(RG int x,RG int rt){
lu[x]=-,f[x]=; RG int tot=,v;
for (RG int i=head[x];i;i=G[i].nt){
v=G[i].to; if (v==fa[x] || lu[v]!=) continue;
tot++; dp(v,); f[x]=f[x]*f[v]%rhl;
}
if (!rt) f[x]=f[x]*g[tot+]%rhl;
else f[x]=f[x]*g[tot]%rhl;
return;
} il void work(){
n=gi(),m=gi(),cnt=;
for (RG int i=;i<=n;++i) lu[i]=fa[i]=dep[i]=dfn[i]=head[i]=;
for (RG int i=,u,v;i<=m;++i) u=gi(),v=gi(),insert(u,v),insert(v,u);
cnt=; dfs(,);
for (RG int i=,u,v;i<=m;++i){ //统计每个点到根的路径数
u=G[i<<].to,v=G[i<<|].to;
if (dfn[u]<dfn[v]) swap(u,v);
while (u!=v){
if (lu[u]==){ printf("0\n"); return; }
lu[u]++,u=fa[u];
}
}
for (RG int i=;i<=n;++i) a[i].i=i,a[i].d=dep[i];
sort(a+,a+n+,cmpd); ans=;
for (RG int i=,x;i<=n;++i){
x=a[i].i; if (lu[x]==-) continue;
dp(x,); ans=ans*f[x]%rhl;
}
printf("%lld\n",ans); return;
} int main(){
File("cactus");
pre(); RG int T=gi();
while (T--) work();
return ;
}