hadoop 2.2.0 cluster setup
环境:
操作系统:Centos 6.5
jdk:jdk1.7.0_51
hadoop版本:2.2.0
hostname ip
master 192.168.1.180
slave1 192.168.1.181
slave2 192.168.1.182
slave3 192.168.1.183
一、前期系统环境配置
设置主机名
临时生效修改主机名,重启失效
[lxj@master ~]$ hostnamemaster
永久生效修改主机名,需重启.
[lxj@master ~]$ vim/etc/sysconfig/network
NETWORKING=yes
HOSTNAME=master
2.设置ip
[lxj@master ~]$ vim/etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
TYPE=Ethernet
UUID=390e4922-0d95-4c34-9dde-897fb8acef0f
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=none
HWADDR=08:00:27:1C:57:24
IPADDR=192.168.1.180
PREFIX=24
GATEWAY=192.168.1.1
DNS1=192.168.1.1
DOMAIN=114.114.114.114
DEFROUTE=yes
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
NAME="Systemeth0"
LAST_CONNECT=1393996666
3.host 映射
[lxj@master ~]$ vim/etc/hosts
127.0.0.1 localhost
192.168.1.180 master
192.168.1.181 slave1
192.168.1.182 slave2
192.168.1.183 slave3
其他节点hosts改成这样。
4.关闭防火墙
开机启动关闭
[lxj@master ~]$ sudoservice iptables stop
[lxj@master ~]$ sudochkconfig iptables off
5.ssh 无密码登录,master 需要启动slave节点的相关进程
[lxj@master ~]$ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
[lxj@master ~]$ cat~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
测试是否能无密码登录了
[lxj@master ~]$ sshlocalhost
如果以上操作完成后 还需要输入密码 请做一下操作
/home/用户名/.ssh 目录权限 700
/home/用户名/.ssh/authorized_keys 文件权限 600
[lxj@master ~]$ chmod 700/home/lxj/.ssh
[lxj@master ~]$ chmod 600/home/lxj/.ssh/authorized_keys
6.拷贝公钥到其他slave节点
由于master主机公钥已写入authorized_keys授权文件,所以只要拷贝授权文件到其他slave节点即可
注意节点.ssh目录和authorized_keys文件权限也分别要是700,600。
[lxj@master ~]$ scp/home/lxj/.ssh/authorized_keys lxj@slave1:/home/lxj/.ssh/
[lxj@master ~]$ scp/home/lxj/.ssh/authorized_keys lxj@slave2:/home/lxj/.ssh/
[lxj@master ~]$ scp/home/lxj/.ssh/authorized_keys lxj@slave3:/home/lxj/.ssh/
测试是否可以无密码登录slave节点了
[lxj@master ~]$ sshslave1
[lxj@master ~]$ exit
[lxj@master ~]$ sshslave2
[lxj@master ~]$ exit
[lxj@master ~]$ sshslave3
可以的话,这样master无密码登录其他slave节点就配配置好了!
二、hadoop
配置文件
先设置下环境变量
JAVA_HOME=/home/lxj/jdk1.7.0_51
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
HADOOP_HOME=/home/lxj/hadoop-2.2.0
HADOOP_MAPRED_HOME=$HADOOP_HOME
HADOOP_COMMON_HOME=$HADOOP_HOME
HADOOP_HDFS_HOME=$HADOOP_HOME
YARN_HOME=$HADOOP_HOME
HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
PATH=$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
export JAVA_HOME CLASSPATHHADOOP_HOME HADOOP_MAPRED_HOME HADOOP_COMMON_HOME HADOOP_HDFS_HOME YARN_HOMEHADOOP_CONF_DIR YARN_CONF_DIR PATH
主要需修改的配置文件
我们先在master机器上修改这些配置文件,然后传到各个节点hadoop 目录在~/hadoop-2.2.0
hadoop-env.sh、core-site.xml、hdfs-site.xml、mapred-site.xml、yarn-env.sh、yarn-site.xml、masters、slaves
以上配置文件,如果没有则自己新建
节点信息
NameNode: master,slave1
SecondaryNameNode: master,slave1
DataNode:slave1,slave2,slave3
三、master
机器配置
1.hadoop-env.sh 修改JAVA_HOME
[lxj@master ~]$ cd ~/hadoop-2.2.0/etc/hadoop
[lxj@master hadoop]$ vimhadoop-env.sh
# The onlyrequired environment variable is JAVA_HOME. All others are
#optional. When running a distributedconfiguration it is best to
# setJAVA_HOME in this file, so that it is correctly defined on
# remotenodes.
# The javaimplementation to use.
export
JAVA_HOME=/home/lxj/jdk-1.7.0_15
2.core-site.xml
<?xmlversion="1.0" encoding="UTF-8"?>
<?xml-stylesheettype="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/lxj/hadoop/tmp</value>
</property>
</configuration>
3.hdfs-site.xml
<?xmlversion="1.0" encoding="UTF-8"?>
<?xml-stylesheettype="text/xsl" href="configuration.xsl"?>
<!--Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>master:50090</value>
</property>
<property>
<name>fs.checkpoint.period</name>
</value>
</property>
<property>
<name>fs.checkpoint.size</name>
</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/lxj/hadoop/hdfs/namenode</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/home/lxj/hadoop/hdfs/datanode</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
<property>
<name>dfs.replication</name>
</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
4.mapred-site.xml
<?xmlversion="1.0"?>
<?xml-stylesheettype="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapred.job.tracker</name>
<value>master:9001</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
</property>
</configuration>
5.yarn-env.sh 修改JAVA_HOME
# someJava parameters
export
JAVA_HOME=/home/lxj/jdk1.7.0_51
if["$JAVA_HOME" !=""];then
#echo "run java in$JAVA_HOME"
JAVA_HOME=$JAVA_HOME
fi
6.yarn-site.xml
<?xmlversion="1.0"?>
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-servicex.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>master:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>master:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:8031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>master:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>master:8088</value>
</property>
</configuration>
7.masters 添加master主机 多个换行写
master
8.slaves 添加slave节点 当加入master时,master即当作NameNode又当作DataNode节点
slave1
slave2
slave3
四、slave
节点配置
其他节点各拷贝一份。
[lxj@master ~]$ scp -r~/hadoop-2.2.0 lxj@slave1:/home/lxj/
[lxj@master ~]$ scp -r~/hadoop-2.2.0 lxj@slave2:/home/lxj/
[lxj@master ~]$ scp -r~/hadoop-2.2.0 lxj@slave3:/home/lxj/
slave节点的hadoop路径需和master的路径一样,当然系统环境需要保持一致。
只要将master主机的配置好的文件拷贝到各个节点即可。
五、 hadoop
启动
1.格式化一个新的分布式文件系统
需要在master和slave1都要执行
[lxj@master ~]$ hdfsnamenode -format
2.启动hdfs和yarn 只需在master执行
[lxj@master ~]$start-dfs.sh
[lxj@master ~]$start-yarn.sh
[lxj@master ~]$mr-jobhistory-daemon.sh start historyserver
或者
[lxj@mater ~]$start-all.sh
start-all.sh已废弃,不推荐使用!
3.测试
master 进程
[lxj@master ~]$ jps
11597 JobHistoryServer
4529 Jps
4460 ResourceManager
4293 NameNode
4377 SecondaryNameNode
slaves进程
[lxj@master ~]$ jps
1941 DataNode
2176 Jps
2046 NodeManager
创建输入目录和文件
[lxj@master ~]$ hdfs dfs-mkdir /input
[lxj@master ~]$ vim./test
hello hadoop test
拷贝文件到hdfs文系统,运行wordcount程序计算输入文件的单词出现次数
[lxj@master ~]$ hdfs dfs-copyFromLocal ./test /input
[lxj@master ~]$ hadoopjar/home/lxj/hadoop-2.2.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jarwordcount /input/ /out
[lxj@master ~]$ hdfs dfs-cat /out/*
hadoop 1
hello 1
test 1
搞了下ha federationqjm 配置,没起来,还是从基础配置开始吧,以后在扩展。