第一问快速幂板子
第二问把式子转化为\( xy\equiv Z(mod\ P)\rightarrow xy+bP=z \),然后扩展欧几里得
第三问BSGS板子
#include<iostream>
#include<cstdio>
#include<map>
#include<cmath>
using namespace std;
long long T,K,y,z,p;
map<long long,long long>mp;
long long gcd(long long a,long long b)
{
return !b?a:gcd(b,a%b);
}
long long ksm(long long a,long long b,long long p)
{
long long r=1ll;
a%=p;
while(b)
{
if(b&1)
r=r*a%p;
a=a*a%p;
b>>=1;
}
return r;
}
void exgcd(long long a,long long b,long long &x,long long &y)
{
if(!b)
{
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
int main()
{
scanf("%lld%lld",&T,&K);
while(T--)
{
scanf("%lld%lld%lld",&y,&z,&p);
if(K==1)
printf("%lld\n",ksm(y,z,p));
else if(K==2)
{
//p=-p;
long long t=gcd(y,p);
if(z%t)
{
puts("Orz, I cannot find x!");
continue;
}
y/=t,z/=t,p/=t;
long long xx,yy;
exgcd(y,p,xx,yy);
printf("%lld\n",(xx*z%p+p)%p);
}
else
{
y%=p;
if(!y&&!z)
{
puts("1");
continue;
}
if(!y)
{
puts("Orz, I cannot find x!");
continue;
}
mp.clear();
long long m=ceil(sqrt(p)),t=1;
mp[1]=m+1;
for(long long i=1;i<m;i++)
{
t=t*y%p;
if(!mp[t])
mp[t]=i;
}
long long tmp=ksm(y,p-m-1,p),now=1,f=0;
for(long long k=0;k<m;k++)
{
long long i=mp[z*now%p];
if(i)
{
if(i==m+1)
i=0;
printf("%lld\n",k*m+i);
f=1;
break;
}
now=now*tmp%p;
}
if(!f)
puts("Orz, I cannot find x!");
}
}
return 0;
}