"""
案例:
给定不同面额的硬币和一个总金额,写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个
输入:amount=5, coins=[1,2,5]
输出:4
"""
def make_the_change(coins, amount):
dp = [[0 for i in range(amount + 1)] for j in range(len(coins) + 1)] #定义状态转移矩阵, 前i个零钱凑出总数为j的组合数
for i in range(len(dp)):
dp[i][0] = 1 #base case
for i in range(1, len(coins) + 1):
for j in range(1, amount + 1):
if j >= coins[i - 1]:
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i - 1]] #状态转移
else:
dp[i][j] = dp[i - 1][j]
return dp[len(coins)][amount]
#凑零钱问题变种
"""
给你 k 种⾯值的硬币,⾯值分别为 c1, c2 ... ck ,每种硬币的数量⽆限,再给⼀个总⾦额 amount ,问你最少需要⼏枚硬币凑出这个
⾦额,如果不可能凑出,算法返回 -1 。
⽐如说 k = 3 ,⾯值分别为 1,2,5,总⾦额 amount = 11 。那么最少需要 3 枚硬币凑出,即 11 = 5 + 5 + 1。
"""
def coin_change(coins, amount):
def dp(n):
# base case
if n == 0: return 0
if n < 0: return -1
# 求最⼩值,所以初始化为正⽆穷
res = float('INF')
for coin in coins:
subproblem = dp(n - coin)
# ⼦问题⽆解,跳过
if subproblem == -1: continue
res = min(res, 1 + subproblem)
return res if res != float('INF') else -1
return dp(amount)
def coin_change(coins, amount):
dp = [amount + 1 for _ in range(amount+1)]
dp[0] = 0
for i in range(len(dp)):
for coin in coins:
if i - coin < 0:continue
dp[i] = min(dp[i], 1 + dp[i-coin])
return -1 if dp[amount] == amount + 1 else dp[amount]