08 机器学习 - Kmeans聚类算法原理

1.概述

K-means算法是集简单和经典于一身的基于距离的聚类算法

采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。

该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

2 算法图示

假设我们的n个样本点分布在图中所示的二维空间。

从数据点的大致形状可以看出它们大致聚为三个cluster,其中两个紧凑一些,剩下那个松散一些,如图所示:
08 机器学习 - Kmeans聚类算法原理
我们的目的是为这些数据分组,以便能区分出属于不同的簇的数据,给它们标上不同的颜色,如图:
08 机器学习 - Kmeans聚类算法原理

3 算法要点

3.1 核心思想

通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。

k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

k-means算法的基础是最小误差平方和准则,其代价函数是:
08 机器学习 - Kmeans聚类算法原理
函数式中,μc(i)表示第i个聚类的均值。

各类簇内的样本越相似,其与该类均值间的误差平方越小,对所有类所得到的误差平方求和,即可验证分为k类时,各聚类是否是最优的。

上式的代价函数无法用解析的方法最小化,只能有迭代的方法。

3.2 算法步骤图解

下图展示了对n个样本点进行K-means聚类的效果,这里k取2。
08 机器学习 - Kmeans聚类算法原理

3.3 算法实现步骤

k-means算法是将样本聚类成 k个簇(cluster),其中k是用户给定的,其求解过程非常直观简单,具体算法描述如下:

  1. 随机选取 k个聚类质心点
  2. 重复下面过程直到收敛 {
    对于每一个样例 i,计算其应该属于的类:
    08 机器学习 - Kmeans聚类算法原理
    对于每一个类 j,重新计算该类的质心:‘’
    08 机器学习 - Kmeans聚类算法原理
    }

其伪代码如下:

创建k个点作为初始的质心点(随机选择)
当任意一个点的簇分配结果发生改变时
       对数据集中的每一个数据点
              对每一个质心
                     计算质心与数据点的距离
              将数据点分配到距离最近的簇
       对每一个簇,计算簇中所有点的均值,并将均值作为质心

4. 算法优缺点

k-means算法比较简单,但也有几个比较大的缺点:

1)k值的选择是用户指定的,不同的k得到的结果会有挺大的不同,如下图所示,左边是k=3的结果,这个就太稀疏了,蓝色的那个簇其实是可以再划分成两个簇的。而右图是k=5的结果,可以看到红色菱形和蓝色菱形这两个簇应该是可以合并成一个簇的:
08 机器学习 - Kmeans聚类算法原理

2)对k个初始质心的选择比较敏感,容易陷入局部最小值。例如,我们上面的算法运行的时候,有可能会得到不同的结果,如下面这两种情况。K-means也是收敛了,只是收敛到了局部最小值:
08 机器学习 - Kmeans聚类算法原理
3)存在局限性,如下面这种非球状的数据分布就搞不定了:
08 机器学习 - Kmeans聚类算法原理

4.1 改良思路

k-means老早就出现在江湖了。所以以上的这些不足也已有了对应方法进行了某种程度上的改良。例如:

  • 问题(1)对k的选择可以先用一些算法分析数据的分布,如重心和密度等,然后选择合适的k
  • 问题(2),有人提出了另一个成为二分k均值(bisecting k-means)算法,它对初始的k个质心的选择就不太敏感
上一篇:K-means、K-medoide中心算法


下一篇:使用python计算自己数据集的mean和std