一、有赞数据链路
1、数据链路介绍
首先介绍有赞的数据总体架构图:
自顶向下可以大致划分为应用服务层、数据网关层、应用存储层、数据仓库,并且作业开发、元数据管理等平台为数据计算、任务调度以及数据查询提供了基础能力。
以上对整体架构做了初步的介绍,对于质量把控来说,最核心的两个部分是:数据仓库以及数据应用部分。因为这两部分属于数据链路中的核心环节,相对于其他层级而言,日常改动也更为频繁,出现问题的风险也比较大。
二、数据层测试
1、整体概览
首先,针对数据层的质量保障,可以分成三个方面:数据及时性、完整性、准确性。
2、 数据及时性
数据及时性,顾名思义就是测试数据需要按时产出。及时性重点关注的三个要素是:定时调度时间、优先级以及数据deadline。其中任务的优先级决定了它获取数据计算资源的多少,影响了任务执行时长。数据deadline则是数据最晚产出时间的统一标准,需要严格遵守。
这三要素中,属于“普世规则”且在质量保障阶段需要重点关注的是:数据deadline。那么我们基于数据deadline,针对及时性的保障策略就可分为两种:
-
监控离线数据任务是否执行结束。这种方式依赖于有赞作业开发平台的监控告警,若数据任务在deadline时间点未执行完成,则会有邮件、企微、电话等告警形式,通知到相应人员。
-
检查全表条数或者检查分区条数。这种方式依赖接口自动化平台,通过调用dubbo接口,判断接口返回的数据指标是否为0,监控数据是否产出。
其次我们可以关注失败、重试次数,当任务执行过程中出现多次失败、重试的异常情况,可以抛出告警让相关人员感知。这部分的告警是对deadline告警的补充,目前在有赞作业开发平台上也有功能集成。
3、数据完整性
数据完整性,顾名思义看数据是不是全,重点评估两点:数据不多、数据不少。
-
数据不多:一般是检查全表数据、重要枚举值,看数据有没有多余、重复或者数据主键是否唯一。
-
数据不少:一般是检查全表数据、重要字段(比如主键字段、枚举值、日期等),看字段的数值是否为空、为null等。
可见数据完整性和业务本身关联度没有那么密切,更多的是数仓表的通用内容校验。所以从一些基础维度,我们可以将测试重点拆成表级别、字段级别两个方向。
表级别完整性:
-
全表维度,通过查看全表的总行数/表大小,若出现表总行数/总大小不变或下降,说明表数据可能出现了问题。
-
分区维度,通过查看当日分区表的数据行数/大小,若和之前分区相比差异太大(偏大或偏小),说明表数据可能出现了问题。
目前有赞元数据管理平台已集成相关数据视图: