最小生成树
在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。
例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。
普里姆算法介绍
普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法。
基本思想
对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。
普里姆算法图解
以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。
(注:最后一个图画错了,应该是EG)
初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空!
第1步:将顶点A加入到U中。
此时,U={A}。
第2步:将顶点B加入到U中。
上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。
第3步:将顶点F加入到U中。
上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。
第4步:将顶点E加入到U中。
上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。
第5步:将顶点D加入到U中。
上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。
第6步:将顶点C加入到U中。
上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。
第7步:将顶点G加入到U中。
上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(E,G)的权值最小。将顶点G添加到U中;此时,U=V。
此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。
克鲁斯卡尔算法介绍
克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。
克鲁斯卡尔算法图解
以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。
第1步:将边<E,F>加入R中。
边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
第2步:将边<C,D>加入R中。
上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
第3步:将边<D,E>加入R中。
上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
第4步:将边<B,F>加入R中。
上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
第5步:将边<E,G>加入R中。
上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
第6步:将边<A,B>加入R中。
上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。
此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
克鲁斯卡尔算法分析
根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
问题一很好解决,采用排序算法进行排序即可。
问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:
在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:
(01) C的终点是F。
(02) D的终点是F。
(03) E的终点是F。
(04) F的终点是F。
关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。
代码实现
package com.darrenchan.graph; public class MatrixUDG { private int mEdgNum; // 边的数量
private char[] mVexs; // 顶点集合
private int[][] mMatrix; // 邻接矩阵
private static final int INF = Integer.MAX_VALUE; // 最大值 /*
* 创建图(用已提供的矩阵)
*
* 参数说明:
* vexs -- 顶点数组
* matrix-- 矩阵(数据)
*/
public MatrixUDG(char[] vexs, int[][] matrix) { // 初始化"顶点数"和"边数"
int vlen = vexs.length; // 初始化"顶点"
mVexs = new char[vlen];
for (int i = 0; i < mVexs.length; i++)
mVexs[i] = vexs[i]; // 初始化"边"
mMatrix = new int[vlen][vlen];
for (int i = 0; i < vlen; i++)
for (int j = 0; j < vlen; j++)
mMatrix[i][j] = matrix[i][j]; // 统计"边"
mEdgNum = 0;
for (int i = 0; i < vlen; i++)
for (int j = i+1; j < vlen; j++)
if (mMatrix[i][j]!=INF)
mEdgNum++;
} /*
* 返回ch位置
*/
private int getPosition(char ch) {
for(int i=0; i<mVexs.length; i++)
if(mVexs[i]==ch)
return i;
return -1;
} /*
* 打印矩阵队列图
*/
public void print() {
System.out.printf("Martix Graph:\n");
for (int i = 0; i < mVexs.length; i++) {
for (int j = 0; j < mVexs.length; j++)
System.out.printf("%10d ", mMatrix[i][j]);
System.out.printf("\n");
}
} /*
* prim最小生成树
*
* 参数说明:
* start -- 从图中的第start个元素开始,生成最小树
*/
public void prim(int start) {
int num = mVexs.length; // 顶点个数
int index=0; // prim最小树的索引,即prims数组的索引
char[] prims = new char[num]; // prim最小树的结果数组
int[] weights = new int[num]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = mVexs[start]; // 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (int i = 0; i < num; i++ )
weights[i] = mMatrix[start][i];
// 将第start个顶点的权值初始化为0。
// 可以理解为"第start个顶点到它自身的距离为0"。
weights[start] = 0; for (int i = 0; i < num; i++) {
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if(start == i)
continue; int j = 0;
int k = 0;
int min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < num) {
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min) {
min = weights[j];
k = j;
}
j++;
} // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = mVexs[k];
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0 ; j < num; j++) {
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && mMatrix[k][j] < weights[j])
weights[j] = mMatrix[k][j];
}
} // 计算最小生成树的权值
int sum = 0;
for (int i = 1; i < index; i++) {
int min = INF;
// 获取prims[i]在mMatrix中的位置
int n = getPosition(prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (int j = 0; j < i; j++) {
int m = getPosition(prims[j]);
if (mMatrix[m][n]<min)
min = mMatrix[m][n];
}
sum += min;
}
// 打印最小生成树
System.out.printf("PRIM(%c)=%d: ", mVexs[start], sum);
for (int i = 0; i < index; i++)
System.out.printf("%c ", prims[i]);
System.out.printf("\n");
} /*
* 克鲁斯卡尔(Kruskal)最小生成树
*/
public void kruskal() {
int index = 0; // rets数组的索引
int[] vends = new int[mEdgNum]; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
EData[] rets = new EData[mEdgNum]; // 结果数组,保存kruskal最小生成树的边
EData[] edges; // 图对应的所有边 // 获取"图中所有的边"
edges = getEdges();
// 将边按照"权"的大小进行排序(从小到大)
sortEdges(edges, mEdgNum); for (int i=0; i<mEdgNum; i++) {
int p1 = getPosition(edges[i].start); // 获取第i条边的"起点"的序号
int p2 = getPosition(edges[i].end); // 获取第i条边的"终点"的序号 int m = getEnd(vends, p1); // 获取p1在"已有的最小生成树"中的终点
int n = getEnd(vends, p2); // 获取p2在"已有的最小生成树"中的终点
// 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
if (m != n) {
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n
rets[index++] = edges[i]; // 保存结果
}
} // 统计并打印"kruskal最小生成树"的信息
int length = 0;
for (int i = 0; i < index; i++)
length += rets[i].weight;
System.out.printf("Kruskal=%d: ", length);
for (int i = 0; i < index; i++)
System.out.printf("(%c,%c) ", rets[i].start, rets[i].end);
System.out.printf("\n");
} /*
* 获取图中的边
*/
private EData[] getEdges() {
int index=0;
EData[] edges; edges = new EData[mEdgNum];
for (int i=0; i < mVexs.length; i++) {
for (int j=i+1; j < mVexs.length; j++) {
if (mMatrix[i][j]!=INF) {
edges[index++] = new EData(mVexs[i], mVexs[j], mMatrix[i][j]);
}
}
} return edges;
} /*
* 对边按照权值大小进行排序(由小到大)
*/
private void sortEdges(EData[] edges, int elen) { for (int i=0; i<elen; i++) {
for (int j=i+1; j<elen; j++) { if (edges[i].weight > edges[j].weight) {
// 交换"边i"和"边j"
EData tmp = edges[i];
edges[i] = edges[j];
edges[j] = tmp;
}
}
}
} /*
* 获取i的终点
*/
private int getEnd(int[] vends, int i) {
while (vends[i] != 0)
i = vends[i];
return i;
} // 边的结构体
private static class EData {
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重 public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
}; public static void main(String[] args) {
char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int matrix[][] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ { 0, 12, INF, INF, INF, 16, 14},
/*B*/ { 12, 0, 10, INF, INF, 7, INF},
/*C*/ { INF, 10, 0, 3, 5, 6, INF},
/*D*/ { INF, INF, 3, 0, 4, INF, INF},
/*E*/ { INF, INF, 5, 4, 0, 2, 8},
/*F*/ { 16, 7, 6, INF, 2, 0, 9},
/*G*/ { 14, INF, INF, INF, 8, 9, 0}};
MatrixUDG pG; // 采用已有的"图"
pG = new MatrixUDG(vexs, matrix); //pG.print(); // 打印图
pG.prim(0); // prim算法生成最小生成树
pG.kruskal(); // Kruskal算法生成最小生成树
}
}
参考:
https://www.cnblogs.com/skywang12345/p/3711510.html
https://www.cnblogs.com/skywang12345/p/3711504.html
https://blog.csdn.net/CmdSmith/article/details/56274314