机器学习基础功能练习II
一、导入sklearn 数据集
from sklearn.datasets import load_diabetes diabetes = load_diabetes() """返回字典,数据集的descr,data,feature_names等关键数据 diabetes.data 是一个矩阵 sklearn.datasets.load_boston sklearn.datasets.load_breast_cancer sklearn.datasets.load_diabetes sklearn.datasets.load_digits sklearn.datasets.load_files sklearn.datasets.load_iris """ print(diabetes) print(diabetes.feature_names) print(diabetes.data)
X = diabetes.data
y = diabetes.target
二、分隔数据集
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) test_size=0.3 代表7:3,random_state=1 0~42
三、模型训练与预测
from sklearn.linear_model import LinearRegression
model = LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
model.fit(X_train, y_train)
y_predict = model.predict(X_test)