Spark ML 机器学习之Word2Vec

一.简介

Word2Vec是一个Estimator表示文档的单词序列并用于训练一个 Word2VecModel。该模型将每个单词映射到唯一的固定大小的向量。使用Word2VecModel 文档中所有单词的平均值将转换为向量;然后,可以将此向量用作预测,文档相似度计算等功能。

二.例子

在下面的代码段中,我们从一组文档开始,每个文档都由单词序列表示。对于每个文档,我们将其转换为特征向量。然后可以将该特征向量传递给学习算法。

import org.apache.spark.ml.feature.Word2Vec
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.sql.Row

// Input data: Each row is a bag of words from a sentence or document.
val documentDF = spark.createDataFrame(Seq(
  "Hi I heard about Spark".split(" "),
  "I wish Java could use case classes".split(" "),
  "Logistic regression models are neat".split(" ")
).map(Tuple1.apply)).toDF("text")

// Learn a mapping from words to Vectors.
val word2Vec = new Word2Vec()
  .setInputCol("text")
  .setOutputCol("result")
  .setVectorSize(3)
  .setMinCount(0)
val model = word2Vec.fit(documentDF)

val result = model.transform(documentDF)
result.collect().foreach { case Row(text: Seq[_], features: Vector) =>
  println(s"Text: [${text.mkString(", ")}] => \nVector: $features\n") }

 

上一篇:《吴恩达深度学习》学习笔记009_机器学习策略(2)(ML Strategy (2))


下一篇:牛牛与交换排序