1. “二分法解方程”
在二分法中,从区间[a,b]开始,用函数值f(a)与f(b)拥有相反的符号。如果f在这个区间连续,则f的图像至少在x=a,x=b之间穿越x轴一次,因此方程f(x)=0在[a,b]之间至少有一个解,通过逐步对[a,b]区间进行二分处理,选取在那一部分改变了符号,逐步缩小方程解的更小区域。
/************************************************************************/
/*二分法 解方程 */
/************************************************************************/
double fun001(double x);
int main()
{
double acurace;
cout << "请输入精度:eg(0.00001)";
cin >> acurace;
double left, right;
do
{
cout << "请输入有效的预期值的边界:";
cin >> left >> right;
} while (fun001(left) * fun001(right) >= 0.0);
double width = right - left,
midPt,funMidVal; //求解
while (width/ > acurace)
{
midPt = (left + right) / 2.0;
funMidVal = fun001(midPt);
if (fun001(left) * funMidVal < 0.0)
{
right = midPt;
}
else
{
left = midPt;
}
width /= 2.0;
} cout << "二分法获取的方程的值是:" << midPt << endl; }
还可以使用Newton-Raphson(牛顿-拉弗森)方法,对方程问题进行求解;
2.“逼近区域的面积”求数值积分问题
一个常用的方法是,使用n-1个等距离的点x1、x2··· xn-1将区间[a,b]划分为n个等间隔的子区域,每个子区域的匡杜dealtaX = (b-a)/n。则对于曲线上的相应的点,使用线段链接相邻的点行程n个梯形。
这些梯形的面积之和约定于曲线f(x)在区间[a,b]下的积分,使用梯形面积公式可以计算第i个梯形的面积为:((f(xi-1) + f(xi))* dealtaX)/2;
将这些值相加整理的:dealtaX * (( y0 + yn)/2 + y1 + y2 + y3 ... + yn-1);
/************************************************************************/
/* 近似积分梯形法求解积分问题 */
/************************************************************************/ double funJiFen(double x);
int main()
{
int n;
cout << "enter 需要对所积分的曲线划分成多少份 (n)";
cin >> n;
double a,b,deltaX, x,y,sum;
cout << "请输入所要积分的边界:(a)(b)";
cin >> a >> b;
deltaX = (b - a)/n;
sum = ;
x = a;
for (int i = ; i <= n - ; i++)
{
x += deltaX;
y = funJiFen(x);
sum += y;
}
sum = deltaX * ((funJiFen(a) + funJiFen(b))/ + sum);
cout << "在分成" << n << "等分的积分面积"<< sum << endl; }
还可以使用:Simpson方法,这种方法思想是使用“抛物线代替梯形”求取面积;
3. 求解微分方程求解问题
微分方程的定义:包含导数或者微分的方程称为微分方程;
使用Euler(欧拉)方法求解微分方程
给定一阶微分方程:y' = f(x,y);
初始条件:y(x0) = y;
在某个区间[a,b]且a = x0; (1) 选择x的增量dealtaX,(2)对n= 0,1,2,3...完成以下步骤:
(i) 设xn+1 = xn + dealtaX;
(ii) 通过点Pn(xn, yn),斜率为 f(xn,yn)的直线上找到点P(xn+1, yn+1),即求出下一点的横坐标yn+1,可以作为点xn+1在原函数的近似值;
(iii)重复以上操作,知道在特定点即可获取微分方程问题;
还可以利用更精确的方法求解微分方程问题,这里仅仅提供一种最简单的求解思路!