题目大意:基于汉诺塔原型,第一根柱子上有n个盘子,从上至下编号从1依次递增至n。在最佳移动方案中,第m次所移动的盘子的编号。
解题思路:模拟必然是会超时的。但根据汉诺塔的递归原理,容易发现,对于n阶汉诺塔,将第一个盘从A柱移动到B柱是一步,将前两个盘从A柱移动到B柱是3步,以此类推,将n个盘从A柱移动到B柱的步数是2^n-1步。而第m步必然在以上递推的值所划分出来的区间之中。查找到区间i后,可以发现,我们把问题缩小为求n-i阶汉诺塔的第m-(used[i]+1)步。同时,如果发现第m步正好是i阶汉诺塔移动后的下一步,那必然是移动i+1号盘子,若正好是i阶汉诺塔移动的步数,那就必然是1号盘子,这就是递归的边界了。
每一阶所需的步数可以用公式快速得出并预缓存,相对于模拟,这种区间查找,缩小范围的方法极大地降低了时间复杂度。
#include <iostream>
using namespace std;
long long int cache[];
int flag=;
void find(long long int m)
{
int i;
for(i=;i<=;i++)
{
if(cache[i]==m)
{
flag=;
return;
}
if(cache[i]<m&&m<cache[i+])
{
if((cache[i]+)==m)
{
flag=i+;
return;
}
else
{
find(m-(cache[i]+));
}
}
}
}
int main() {
int i;
cache[]=;
for(i=;i<=;i++)
{
cache[i]=cache[i-]*+;
}
long long int n,m;
while(cin>>n>>m)
{
if(n==&&m==)
break;
flag=;
find(m);
cout<<flag<<endl;
}
return ;
}