定义
卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果
,
其中星号*表示卷积。
当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。
另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。
如果卷积的变量是函数x(t)和h(t),则上述卷积(和)的计算变为积分:
,
其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。
参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。
图解卷积
- 首先将两个函数都用来表示。
- 对其中一个函数做水平翻转: →
- 加上一个时间偏移量,让 能沿着 轴滑动。
- 让t从-∞滑动到+∞。两函数交会时,计算交会范围中两函数乘积的积分值。
换句话说,我们是在计算一个滑动的的加权平均值。也就是使用当做加权函数,来对取加权平均值。
- 最后得到的波形(未包含在此图中)就是f和g的卷积。
性质
对于长度为n的序列,按照卷积的定义进行计算,需要做2N - 1组对位乘法,其计算复杂度为O(N * N);
而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为O(N * log N)。
这一结果可以在快速乘法计算中得到应用。
应用
卷积在工程和数学上都有很多应用:
招展
卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。Kenneth R.Castlman的《数字图像处理》对卷积讲得很详细。
高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到:
for(i=0; i<N; i++)
{
for(j=0; j<N; j++)
{
g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2));
sum += g[i*N+j];
}
}
再除以 sum 得到归一化算子 ,N是滤波器的大小,delta自选
首先,在提到卷积之前,必须提到卷积出现的背景。
信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入 输出 和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。
因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统传递函数和输入信号,在数学上的形式就是所谓的卷积关系。
卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。
C++代码