LL was interested in this game at one time, but he found it is so difficult to find the optimal scheme. So he always play the game with a greedy strategy: choose the largest group to remove and if there are more than one largest group with equal number of blocks, choose the one which contains the most preceding block ( (x1,y1) is in front of (x2,y2) if and only if (x1<x2 || x1==x2 && y1<y2) ). Now, he want to know how many points he will get. Can you help him?
Input Each test case begins with two integers n,m ( 5<=n,m<=20 ), which is the size of the board. Then n lines follow, each contains m characters, indicating the color of the block. There are 5 colors, and each with equal probability.
Output For each test case, output a single line containing the total point he will get with the greedy strategy.
Sample Input 5 5
35552
31154
33222
21134
12314
Sample Output 32
Hint
35552 00552 00002 00002 00000 00000
31154 05154 05104 00004 00002 00000
33222 01222 01222 00122 00104 00100
21134 21134 21134 25234 25234 25230
12314 12314 12314 12314 12314 12312
The total point is 12+6+6+2+6=32. *************************************************************************************************************************** ***************************************************************************************************************************
1 #include<iostream> 2 #include<string> 3 #include<cstring> 4 #include<cmath> 5 #include<algorithm> 6 #include<cstdio> 7 using namespace std; 8 9 char g[24][24] = {0}; 10 bool use[24][24] = {0}; 11 int dx, dy, n, m; 12 int zx[] = {-1, 0, 1, 0}, zy[] = {0, 1, 0, -1}; 13 14 int find(int x, int y, char c)//找最大的区域 15 { 16 int sum; 17 int k; 18 use[x][y] = true; 19 sum = 1; 20 for (k = 0; k < 4; ++k) 21 { 22 if(g[x + zx[k]][y + zy[k]] == c && !use[x + zx[k]][y + zy[k]]) 23 { 24 sum += find(x + zx[k], y + zy[k], c); 25 } 26 } 27 return sum; 28 } 29 30 void del(int x, int y, char c)//删除最大的块 31 { 32 int k; 33 g[x][y] = '0'; 34 for (k = 0; k < 4; ++k) 35 { 36 if(g[x + zx[k]][y + zy[k]] == c) 37 { 38 del(x + zx[k], y + zy[k], c); 39 } 40 } 41 } 42 void out(); 43 void move()//矩阵之间元素的移动 44 { 45 int i, j, k, last = m;; 46 // out(); 47 int x1, x2; 48 for (j = 1; j <= last; ++j) 49 { 50 for (x1 = 1; x1 <= n && g[x1][j] == '0'; ++x1); 51 if (x1 > n) 52 { 53 for (k = j; k < last; ++k) 54 { 55 for (i = 1; i <= n; ++i) 56 { 57 g[i][k] = g[i][k + 1]; 58 } 59 } 60 for (i = 1; i <= n; ++i) 61 { 62 g[i][last] = '0'; 63 } 64 last--; 65 j--; 66 continue; 67 } 68 x2 = x1 + 1; 69 while(x2 <= n) 70 { 71 if (g[x2][j] == '0') 72 { 73 for (i = x2; i > x1; --i) 74 { 75 g[i][j] = g[i - 1][j]; 76 } 77 g[x1][j] = '0'; 78 x1++; 79 } 80 ++x2; 81 } 82 } 83 84 } 85 void solve() 86 { 87 int i, j, ans = 0; 88 int maxArea = 0; 89 while(true) 90 { 91 memset(use, false, sizeof(use)); 92 maxArea = 0; 93 for (i = 1; i <= n; ++i) 94 { 95 for (j = 1; j <= m; ++j) 96 { 97 if (!use[i][j] && g[i][j] != '0') 98 { 99 int t = find(i, j, g[i][j]); 100 if (t > maxArea) 101 { 102 maxArea = t; 103 dx = i; 104 dy = j; 105 } 106 } 107 } 108 } 109 if (maxArea <= 1) 110 break; 111 ans += maxArea * (maxArea - 1); 112 // printf("%d\n", maxArea * (maxArea - 1)); 113 del(dx, dy, g[dx][dy]); 114 move(); 115 } 116 printf("%d\n", ans); 117 } 118 119 bool input() 120 { 121 if (scanf("%d%d", &n, &m) == EOF) 122 return false; 123 memset(g, '0', sizeof(g)); 124 int i; 125 for (i = 1; i <= n; ++i) 126 scanf("%s", g[i] + 1); 127 return true; 128 } 129 130 int main() 131 { 132 while(input()) 133 { 134 solve(); 135 } 136 return 0; 137 }View Code
转载于:https://www.cnblogs.com/sdau--codeants/p/3428264.html