A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N−1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K components
where K
is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
#include<iostream> #include<vector> #include<set> #include<algorithm> using namespace std; const int inf=10010; vector<vector<int>> v; set<int> s; vector<int> temp; int book[inf],maxh=0; void dfs(int node,int height) { if(height>maxh) { temp.clear() ; temp.push_back(node); maxh=height; } else if(height==maxh) { temp.push_back(node); } book[node]=1; for(int i=0;i<v[node].size() ;i++) { if(book[v[node][i]]!=1) { dfs(v[node][i],height+1); } } } int main() { int m,s1,a,b,cnt=0; cin>>m; v.resize(m + 1); for(int i=1;i<m;i++) { scanf("%d%d", &a, &b); v[a].push_back(b); v[b].push_back(a); } fill(book,book+inf,0); for(int i=1;i<=m;i++) { if(book[i]==0) { dfs(i,1); if(i==1) { if(temp.size()!=0) s1=temp[0]; for(int j=0;j<temp.size();j++) s.insert(temp[j]); } cnt++; } } if(cnt>=2) printf("Error: %d components\n",cnt); else{ temp.clear(); fill(book,book+inf,0); dfs(s1,1); for(int i=0;i<temp.size();i++) s.insert(temp[i]); for(auto it=s.begin() ;it!=s.end() ;it++) cout<<*it<<endl; } return 0; }
多多学习stl吧